TELECOM
SudParis

m X

4, <
‘" bg o®

INSTITUT
POLYTECHNIQUE o
DE PARIS ‘Na. |P PARIS

Improving memory usage in virtual
machines

Thése de doctorat de I'Institut Polytechnique de Paris
préparée a Télécom SudParis

2023IPPAS021

Ecole doctorale n°626 Ecole doctorale de I'Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

NNT

Thése présentée et soutenue a Palaiseau, le 14/12/2023, par
YoHAN PIPEREAU

Composition du Jury :

Pierre Sens

Professeur, Sorbonne Université (LIP6) Rapporteur
Romain Rouvoy

Professeur, Université de Lille (CRIStAL) Rapporteur
Brice Goglin

Directeur de Recherche, Centre INRIA de I'Université de Bordeaux Président du jury
Stella Bitchebe

Chercheuse postdoctorale, McGill University (DISCS lab) Examinatrice

Gaél Thomas
Professeur, Institut Polytechnique de Paris Directeur de thése

Mathieu Bacou
Maitre de Conférence, Institut Polytechnique de Paris Co-encadrant de thése

Jean-Pierre Lozi
Chargé de Recherche, INRIA Paris Invité

fe
—
S,
O
o
5
O
g
©
)
O
- -
I—




Improving memory usage in virtual machines

v3.0 (final version)

Yohan Pipereau

January 1, 2024



A Koko et Julie

Yohan Pipereau



Remerciements

J’aimerais tout d’abord remercier mon directeur de these, Gaél Thomas pour la
proposition originale d'un sujet d’une importance majeure pour les infrastructures
Cloud ainsi que pour la relecture du manuscrit.

Je voudrais ensuite remercier Mathieu Bacou pour avoir rejoint l’encadrement
de theése a mi-chemin ainsi que pour sa participation a l’écriture des papiers et la
conduite des expériences sur les plateformes FaaS.

Je remercie également Jean-Pierre Lozi qui nous a rejoint un peu plus tard pour
son aide a la préparation de deux soumissions de papiers et pour nous rappeler a
I’essentiel et nous orienter grace a son expertise.

Je suis également reconnaissant a Francois Trahay pour son aide a la préparation
de notre seconde soumission en conférence ainsi que pour ’évaluation du placement
de page de VMs sur les infrastructures NUMA. Je ne peux conclure mes remer-
ciements a Francois sans le remercier pour sa méthodologie de construction du plan
de l'état de I'art, qui m’a valu quelques critiques, mais qui m’a permis de livrer
rapidement un ensemble cohérent.

Je souhaiterais ensuite remercier Pierre Sens et Romain Rouvoy pour leurs lec-
tures attentives de ce manuscrit ainsi que pour leurs retours précieux pour améliorer
I'organisation et le contenu du manuscrit. Je remercie également tous les membres
de mon jury d’avoir accepté de participer a celui-ci : Stella Bitchebe et Brice Goglin.

Je ne saurais assez remercier Denis Conan pour son aide et ses conseils dans le
traitement statistiques de données expérimentales afin de mettre en avant la signi-
ficativité des effets NUMA, mais aussi pour son partage sans condition d’outils et
de méthodes scientifique. Je suis reconnaissant de m’avoir incité a construire des
abstractions qui m’ont permis de comprendre différents problemes et de m’avoir rap-
pelé a la démarche scientifique lorsque je m’en éloignais. De maniere plus importante
encore, je souhaiterais le remercier pour avoir régulierement pris de mes nouvelles
au cours de I’écriture du manuscrit et pour avoir trouvé les mots réconfortants lors
du retour de nos soumissions.

Merci également a Pierre Sutra pour ses retours, et pour nos discussions sur mes
travaux, et en particulier pour m’avoir aidé a corriger l'introduction et la conclusion
de ce manuscrit.

Un grand merci a Amel Bouzeghoub et Sophie Chabridon pour avoir servi de



boussoles en fin de these, en discutant aussi bien du calendrier de fin these, de la
préparation du manuscrit que des poursuites possibles apres la these.

Je souhaiterais remercier de nombreux membres du département RST, de I’équipe
PDS, du département INF ainsi que de la direction de la recherche pour leur soutien
moral, méthodologique, le partage d’information et pour les bons moments passés
a vos cotés au cours des dernieres années. La liste des personnes a remercier est
tres longue mais je souhaiterais en particulier remercier FElizabeth Brunet, Olivier
Levillain, Sophie Chabridon, Chantal Taconnet, Bruno Defude et Hervé Debar ...

De plus, je souhaiterais remercier plusieurs générations de doctorants pour 'aide
méthodologique, scientifique et leur soutien moral pendant ces années. En partic-
ulier, je souhaiterais remercier Alexis Lescouet pour ces conseils précieux et l'aide
qu’il m’a apporté dans la compréhension de divers mécanismes des systemes d’exploitation.
A Adam Chader pour son énergie débordante, son optimisme inépuisable, et sa joie
de vivre constante qui a égayé de nombreuses journées lors de I’écriture du manuscrit.
C’est un plaisir de pouvoir discuter ensemble de problemes, design, algorithmes ou
mécanismes sans jugements de valeur.

A Marie Reinbigler pour m’avoir inspiré a discuter avec des personnes en dehors
de I'équipe, pour avoir partager des outils et des méthodes d’analyse de résultats,
pour son soutien moral. A Mickaél Boichoit pour son soutien, pour sa bienveillance
et pour nos multiples discussions autour de nos problemes communs d’interconnects,
et parce qu’étre un peu fou de temps en temps c’est chouette aussi. A Subashiny
Tanigassalame pour son soutien depuis le premier jour et pour sa confiance a colla-
borer ensemble sur un sujet passionnant. A Anatole Lefort pour ses conseils dans
I’écriture de cette these, pour la confiance qu’il m’a accordée pour travailler ensemble
et pour les bons moments que nous avons passés ensemble en dépit des divers con-
finements et restrictions. Je voudrais aussi remercier Alexis Colin, Boubacar Kane,
Damien Thenot, Pedro Borges et Rémi Dulong pour les bons moments passés en-
semble, malheureusement, trop limités par le télétravail et le COVID.

Plus généralement, je souhaiterais remercier mes anciens professeurs, mes anciens
directeurs de stages, mes amis, qui m’ont aidé et soutenu durant cette these. En
particulier, je voudrais remercier Alezandre Conte, Thibaut Sautereau, Vincent Gou-
vernec, Vincent Brillault, Quentin Bouget, Jérome Tollet, Clément Parssegny, Eloise
Bonnet, Hamza Benfkira, Jules Gonzales, Anna-Rose Lescure, Florian Grante, Vic-
tor Védie, Romain Cherré, Stevan Coroller et tous ceux que je n’ai pas pu citer
faute de place.

Il aurait été compliqué de préparer ce doctorat sans l'aide de ma famille. En
particulier, je dois beaucoup a mes parents, a mes grands-parents, a mon frére ainsi
qu’au reste de ma famille pour leur encouragement et leur confiance. Je voulais vous
remercier de m’avoir poussé a étre curieux et persévérant ainsi que pour m’avoir
soutenu tout au long de cette these méme dans les moments les plus difficiles.

Ces remerciements ne peuvent s’achever sans remercier Julie Chevrier pour son
soutien moral quotidien, mais aussi pour avoir relu mon manuscrit et préter une
oreille attentive aux différents problemes rencontrés. Je suis heureux d’avoir pu
partager des moments parfaits a tes cotés en parallele de la réalisation de mes
travaux. Apres quatre longues années, je suis reconnaissant pour tous tes efforts
afin de faire tenir notre relation en dépit d’heures de travail parfois compliquées et

3 Yohan Pipereau



des ajustements d’emploi du temps a la veille de soumissions ou d’autres échéances.

4 Yohan Pipereau



Contents

[Remerciements| 2

Introduction| i

Support for memory disaggregation in virtual environ-

ment| 1
[1 Heterogeneous memory backends| 3
(1.1 Trends in memory usage| . . . . . . . . . . . .. 3
(1.2 Heterogeneous properties of memory backends| . . . . . . .. ... .. 4
(1.3 A review of common memory backends| . . . . .. ... ... ... .. 8
(1.4 Resource disaggregation| . . . . . ... ... ... ... ... ... .. 13
[Lb Cache coherent interconnectsl. . . . ... ... . ... ... .. ... 16
2 Principles of Linux kernel memory management| 24
[2.1  Core abstractions of Memory Management| . . . . . . . ... ... .. 24
2.2 Address translation] . . . . . . .. ... oo 27
2.3 Memory allocations| . . . . . .. ... ... ... .. 0. 28
(2.4 Principles of memory reclamation| . . . . . . . ... ... 29
[2.5 LRU based reclamation: Page Cache and Swapping| . . . . . . . . .. 31
[3 Heterogeneous memory management| 36
[3.1 Hardware heterogeneity reporting| . . . . . . . .. .. ... ... ... 36
[3.2  Explicit Heterogeneity Management| . . . . . . . . ... ... ... .. 39
[3.3  Updating the LRU for multiple levels of heterogeneity|. . . . . . . . . 40
[3.4 Remote cachingl . . . . .. ... ... ... L 41
[3.5 In-kernel automatic memory placement| . . . . . . . .. ... ... .. 42
[3.6  In-user automatic memory placement|{ . . . . . . . ... ... 49
[4  Architectures of disaggregated memory systems| 53
[4.1  RDMA: A fabric for memory disaggregation . . . . . . ... ... .. 53
[4.2  Limits to the adoption of RDMA in datacenters| . . . . . . ... ... 55




[4.3  Mechanisms for OS-level transparent remote memory accesses| . . . . 56

[4.4  Distributed Shared Memory| . . . . . . ... .. .. ... ... ... 61
[4.5 Hardware accelerators for disaggregated memory|{. . . . . . . . . . .. 65
[5>  Virtual Machines Resource Management in datacenters| 68
.1 Virtual Machines: execution and isolation unitl . . . . . . . . . . . .. 69
[>.2  Automatic tiering of VM memory| . . . . . . . ..o 73
[>.3 Collaborative Memory Management|{ . . . . . . . . ... ... ... .. 75
b4 Virtual Machine Orchestrationl . . . . . . . . . .. .. ... ... ... 76
[>.5 Challenges of resource usage unpredictability| . . . . . . . . . ... .. 80
[5.6 Transient Virtual Machines: Trading service level for resource usage| . 83
[5.7  Orchestration of disageregated resources| . . . .. . . . .. ... ... 85
Il Contributions| 89
6 ODswap, transparent RDMA VM accesses 90
6.1 Motivationl. . . . . . . . ... 90
§ Design| . . . .. 95
(6.3  Implementation| . . . . .. ... ... 99
6.4 FEvaluationl. . . . . . . . . . 117
[ Motivating hypervisor and VM co-design| 127
7.1 Memory overcommitment techniques| . . . . ... .. ... ... ... 128
7.2 Hypervisor tiering semantic gap| . . . . . . . . . . . . . ... ... .. 140
8 ExoVM, fast elastic VMs| 148
8 Design| . . . . . L 148
(8.2 Implementation| . . . . . . .. ... 158
8.3 FEvaluationl. . . . . . . . .. 166
Conclusionl 174
[Side contributions| 177
A ppend 179
(Bibliography| 185
IRésumé (fr)| 202

6 Yohan Pipereau



Introduction

Context

Datacenters host a large number of servers, and they offer software services or
directly rent access to a subset of their physical resources to customers. In or-
der to rent independent subset of physical resources, datacenters rely on different
techniques which support program execution while ensuring isolation of resources
between each others. Resource isolation is mostly enforced with the help of virtual
machines, which are used to enforce confidentiality, integrity and provide mecha-
nisms to prevent resource stealing. In addition to offering resource isolation, virtual
machines are also convenient deployment units. Indeed, on the one hand, virtual
machines support the execution of any operating system and software stack. On the
other hand, virtual machines supports migration from one server to another which
is hard to support in other execution units because of dependency conflicts between
source software stacks and destination software stacks during migration. Virtual
machines tackle this problem by shipping end-to-end software stacks (applications,
libraries, operating system) to prevent dependency conflicts.

Selling shared access to a set of physical resources through virtualization has
made datacenters highly profitable over the past years. However, multiple cloud
providers have reported that resources in their datacenters remain largely underused.
This is caused by the virtual machine abstraction which requires static allocation of
server resources at start time. Static provisioning poses major constraints.

First, programs usually have dynamic resource usage over time and resource us-
age changes a lot especially in applications exposed to external inputs (web-servers,
load-balancers, ...). While resource usage is dynamic, on the contrary, resources are
allocated statically when the virtual machine is started. This means that allocated
resources which are unused by the VM can not be used for any other execution.
Cloud providers observe these resources as a potential source of additional profits
even though using them while maintaining safety and performances is a challenge.

Second, since resources are mostly static, the declaration of virtual machine
resources before provisioning is complex as it must forecast worst case scenario of
resource usage. Most declarations end up overprovisioning their instances to ensure
execution safety and prevent crashes. Overprovisioning VMs amplifies even more
the amount of unused resources in the datacenter.

Third, since virtual machines can only be executed on a single server at a time



and may have different allocation requirements, finding an available allocation server
candidate is challenging. Indeed, cloud providers try to find an allocation configura-
tion of VMs on multiple servers which reduces the remaining amount of unallocated
resources on each server. This configuration known as the optimal configuration
is a well-known problem of combinatorial optimization which directly maps to the
knapsack problem known to be NP-complete.

In this thesis, we focus exclusively on improving usage of memory resources, and
we leave improvement of storage and processing power as future contributions. The
first motivation to focus on memory is that memory represents a significant part of
datacenter costs. Indeed, in 2023, Microsoft Azure has reported that memory can
account for up to 50% of a datacenter costs [50]. The second reason to focus on
optimizing memory usage in VMs is that new hardware is being released which could
help reduce datacenter cost. Indeed, since 2015, there has been multiple proposals
to build a new rack infrastructure with a high-speed interconnect to support remote
memory accesses. Supporting remote memory accesses is expected to be a game
changer for virtual machines as it enables to access memory fragmentation leftovers
and potential unused pool of memory in remote servers.

We propose to target specific directions to reduce memory usage in datacenters
running virtual machines

In particular, we try to identify the challenges introduced by virtualization to use
disaggregated memory. We identify that it is important to require as few changes
as possible in applications executing inside VMs to maintain transparency. Further-
more, while the use of remote memory should help VM scheduling decisions, it is
important to maintain a low impact on application performances.

A first research direction will propose a solution to use virtualization with dis-
aggregated memory and to study the impact on application performances.

A second research direction will try to identify the motivations behind static
provisioning of VMs. It will investigate the reasons behind the low adoption of VMs
adapting their memory capacity during their execution.

A third research direction will focus on identifying new design solutions to im-
plement efficient mechanisms for dynamic memory changes in VMs. This direction
will investigate the performance impact of time-sharing memory resources between
VMs and the consequences in memory usage.

Contributions

The contributions of this thesis are as follows:

e We implement and evaluate ODswap, a transparent mechanism to support
transparent remote memory accesses in VMs based on Linux swapper mech-
anism and RDMA, a low-latency fabric. ODswap addresses the problem of
overconsumption of memory on the remote server and uncollaborative page
placement caused by virtualization semantic gap. These problems are ad-
dressed in ODswap by implementing on-demand allocation on remote mem-
ory and paravirtualization to use guest memory management information. We
evaluate ODswap to determine the impact on applications performances, to
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compare this architecture with distributed shared memory and cover how far
memory can avoid virtual machine crashes in case of peak memory usage.

e We present the results of several experiments on existing VM mechanisms
related to memory heterogeneity and dynamic capacity changes. In
particular, we show how the design of existing VMs and hypervisor is inefficient
to provide fast memory capacity changes. We also demonstrate and clarify
the semantic gap between guest memory management and hypervisor memory
management which leads to suboptimal page placement on tiered memory.

e We present ExoVM, a work-in-progress prototype to support fast dynamic
changes of available memory in VMs. ExoVM is strongly motivated by a
large evaluation of existing mechanisms to support dynamic memory changes
which exhibit extremely low speed in existing solutions. ExoVM proposes to
directly let a virtual machine initiate a memory reconfiguration request to the
hypervisor and proposes solution to let the hypervisor control memory usage.
Early evaluation results show that ExoVM is a promising approach to limit
memory fragmentation and to improve usage of memory over time in a single
server.

Organization of the document

The thesis is organized as follows: part [[| presents historical and recent advances
in management of heterogeneous memory in operating systems as well as a large
overview of virtual machines from low-level mechanisms to their consequences and
constraints for resource usage in the datacenter. In particular, chapter|l| presents the
emergence and characterization of various heterogeneous memory backends. Chap-
ter [2| presents the internals and foundations of memory management in Linux op-
erating system. Chapter [3| introduces new proposals for memory management on
various emerging memory backends. Chapter 4] focuses on the use of far memory
in different systems such as databases, language runtimes and operating systems.
Chapter [5| reviews how modern system virtual machines are implemented and the
consequences for datacenter orchestration.

Next, the following chapters presents the main contributions of this thesis. Chap-
ter [0] presents our first prototype, ODswap. Chapter [7] discusses multiple detailed
evaluations of existing solutions to adapt memory capacity in VMs to motivate the
design of ExoVM, the second contribution of this thesis. Chapter [§ presents our
second ongoing prototype ExoVM. Finally, we conclude this thesis with the main
takeaways and future works.
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Part 1

Support for memory
disaggregation in virtual
environment



QOver the last few years, cloud providers have been trying to execute as much
customer jobs as possible on a reduced number of servers to make higher profits.
They commonly run these customer jobs in execution units such as containers and
virtual machines to isolate deployments and manage a uniform view of customer
jobs through abstracted services. However, improving datacenter resource usage re-
mains a hard problem with a wide range of solutions proposed from hardware to
orchestration software stacks, which still leaves significant percentage of resources
unused.

The decreasing cost of memory capacities enable to increase server capacities at
similar cost while executing more jobs. However, this solution is unsatisfactory since
resources remain largely underused. A more promising approach is brought by new
hardware enabling rack-scale memory access with low-latency and high-throughput.
This approach is expected to be a game changer in the cloud landscape. Indeed,
accessing remote memory resources would enable resource upgrades at a lower cost
by avoiding entire server changes. Accessing larger pools of memory would also ease
virtual machine placement algorithms. However, remote memory accesses may hurt
end-user performances compared to local memory accesses, and requires software
stacks to propose clever placement of memory.

Leveraging new memory technologies in virtual machines require changes to var-
1ous software layers. Indeed, the virtual machine abstraction is tightly dependent
on existing operating systems services such as memory and 10 management and
scheduling. Yet, they also require new OS services to leverage hardware accelerators
in processor, which help to speedup 10 and memory management. Finally, a user-
space application named hypervisor is also required to complete the set of mechanisms
proposed by operating systems and to help run the VM abstractions in clusters of
hyperuvisors.

This part first proposes a review of existing and new memory backends and their
specificities. Then, it dwells on newer approach to memory management and pro-
poses a review of Linux kernel basic memory management services and abstractions.
After getting a better understanding of OS level memory management, we review
the existing solutions for handling memory heterogeneity at operating system level
with a focus on legacy heterogeneous backend such as storage backends and NUMA
memory. Next, we review recent work on far memory and disaggregated memory in
different software systems such as databases, language runtime and operating sys-
tems with a focus on the different hardware assumptions and requirements proposed.
Finally, we present legacy and recent advances in virtual machine resource manage-
ment by reviewing challenges and solutions at host, rack and datacenter levels with
a focus on memory resources at hypervisor level.
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Heterogeneous memory backends

The landscape of memory hardware has changed a lot over the last twenty years
with a large spectrum of trade-off between each backend. Operating systems and
software stacks are relying heavily on memory management abstractions inherited
from the Unix operating systems. However, the large gains in throughput with
High-Bandwidth Memory (HBM), the arrival of byte-addressable persistent memory
(NVDIMM), the low latency accesses to flash drives (NVMe) is driving system and
database communities to reconsider existing abstractions. In this section, we pro-
pose a quick characterization of new memory backends from a software perspective.
First, we present trends in memory hardware and its usage in computers. Second,
we discuss memory heterogeneity and the different properties of memory backends.
Then, we review some common memory backends from a software perspective before
discussing the tight coupling of interconnects and cache coherency for transparent
remote memory communications.

1.1 Trends in memory usage

Compute requires storing intermediate results somewhere. Processors rely on a
limited set of registers to store intermediate results. Because of the limited size of-
fered by these registers, program mostly use these registers to store temporary results
and rely on larger memory technologies to store more information.

Additionally, some program results need to survive the program lifetime and thus
require the need of persistent storage. Historically, computers have mostly relied on
two types of memory technology: wvolatile byte-addressable memory and persistent
block storage. Storage has been referring to the class of memory technology offering
persistence guarantees and working at block granularity. However, the arrival of
byte-addressable non-volatile memory is redefining high-level understanding of these
hardwares. This section presents the two main memory trends which are the conver-
gence of storage and memory in terms of performance and properties and memory
speed becoming a bottleneck over CPU speed in many programs.



1.2. HETEROGENEOUS PROPERTIES OF MEMORY BACKENDS

1.1.1 Filling the latency gap between storage and memory

On the memory side, volatile memory as it exists in modern computers appeared
in late 1960s by using semiconductors to store information. Over time, memory
capacity have increased considerably from a few bytes to hundreds or thousands of
gigabytes of memory in more recent servers.

On the storage side, before the arrival of NAND flash drives, persistent storage
has relied for a long time on hard drives and tape drives. These storage solutions
require mechanical mechanisms to seek data incurring long seek latencies. In order
to fill the gap between storage and memory latencies, storage vendors have started
NAND flash based on semiconductors similarly to volatile memory. Thus, recent
storage solutions using NVMe protocol for communication between storage controller
and the target can even yield sub 100 ps latencies blurring the latency difference
between volatile memory and storage.

1.1.2 Memory wall and the increasing latency difference be-
tween compute and memory

In 1995, Wulf et al.[165] first reported a divergence between exponential growth
of processor speeds and memory latency and bandwidth improving at a slower pace.
Under cache hit, memory access goes approximately to processor speeds, while cache
miss exhibits memory access latency. Even considering good cache hit ratio (from
99 % to 99.8 %), the number of CPU cycles grows from a few cycles in the 1990s
to around a hundred in the 2010s. Their conclusion is known as the memory wall
and forecast that memory latency will bottleneck all application performances in
the next years.

The memory wall constraint has motivated application rewriting to improve
cache accesses. However the number of CPU cycles upon cache miss has remained
high.

Similarly to volatile memory accesses other storage backends have become con-
siderably slower compared to the improvement in CPU speeds. An entire spectrum
of access latencies expressed in CPU clock cycles is now available with higher ca-
pacities available as latencies become higher.

1.2 Heterogeneous properties of memory back-
ends

In section |1.1, we have described some of the general trends in memory and
storage evolution. In order, to fully encompass the difference between each backend,
we propose to review core properties variations between each backend. Indeed, even
though memory heterogeneity is commonly seen as latency ( and throughput
( difference, there exists multiple other properties to characterize each backend
such as parallelism, granularity, capacity, cost and power consumption.
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1.2. HETEROGENEOUS PROPERTIES OF MEMORY BACKENDS

1.2.1 Read/Write Latency

There are significant order of magnitude between the different memory latencies
[l For example, commonly reported order of magnitudes for L1 SRAM access is
around 1ns while main memory access is around 60 ns, RDMA accesses are around
1 ps and SATA SSD 1 ms. These latencies variations appear for various reasons.
One reason is that memory backend technologies (SRAM, DRAM, 3DXpoint, ...)
introduce significant latency gaps. Another reason is that memory devices are used
at varying distance to where computation occurs. Furthermore, some backends
exhibit differences between read and write operations. For example, NVDIMMs
write latency is similar to DRAM write latency while read latency is clearly slower
than DRAM read latency.

1.2.2 Read/Write Bandwidth

Interestingly latency is not the only important performance metric for application
efficiency. Some applications may be latency-bound while others are bandwidth-
bound. Typically, HPC applications leveraging GPGPU with matrix computations
often need to load a large volume of data (matrix) at a time. High bandwidth
memory (HBM) fits the need for high bandwidth need by offering between a few
hundreds of gigabytes per second to a terabyte per second of bandwidth compared
to classic DRAM, which bottlenecks around a hundred gigabyte per second for 6
channels DDRA.

1.2.3 Parallelism

IO parallelism has become a core property of attached storage and memory solu-
tion. Memory has provided 1O parallelism for a long time. However, 1O have a long
history of sequential accesses caused by hard drives disks reading head. Legacy 10
controllers stacks (SCSI, SATA) have been built on these sequential access assump-
tion. Recently, storage has adopted flash memory storage and parallel 1O controllers
(NVMe) exposing multiple hardware queue. While IO parallelism offers large per-
formance gain it also causes various challenges for the software developer. Indeed,
since 10 requests and IO completions may be reordered, it violates the assumption
that 10s are delivered in program order as guaranteed by serial backends before.

1.2.4 Granularity

Access granularity may be fized-size or dynamic-size. Fixed size management
enables easier tracking and management while dynamic sizes permits better pack-
ing and resource usage. Access granularity may be performed at word size, cache
line size, sector size, page size. Appropriate granularity is a key criterion when
performing accesses. Using too-small granularity leads to multiple round-trips caus-
ing higher 10 latency, while too-large granularity leads to unnecessary longer 10
transfers and resource waste referred as 10 amplification [125].

'Here latency is expressed as latency from CPU to DIMM which better reflects application
latency rather than the latency from the DRAM controller to memory cells (CAS latency)
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1.2. HETEROGENEOUS PROPERTIES OF MEMORY BACKENDS

1.2.5 Capacity

Capacity is an immediate property of a storage solution. A general rule of thumb
is that larger capacity comes with higher latencies. Capacity of a memory backend
is limited by price considerations thus capacity is commonly considered as a GiB/S$.

1.2.6 Cost

Cost is also a key factor of adoption for a memory technology. Computers usually
balance costs by adapting parameters such as throughput, latency, capacity. Chang-
ing these parameters can sometimes be achieved directly by computer upgrades.
However, some parameters (latency, throughput) can only be changed indirectly by
selecting different vendors for an identical technology, by changing the memory tech-
nology directly (SRAM vs DRAM) , by picking different generations of a backend
(e.g. DDR4, DDR5).

1.2.7 Power

Power consumption is becoming a key property in datacenter and supercomput-
ers because of various limits to the use of energy. In particular, datacenters must take
into account various factors related to energy supply such as energy cost, maximum
power available. Additionally, there exists huge variations across countries regarding
energy supply (e.g. carbon footprint, variable energy supply) which directly impact
datacenters. New computers must become as energy efficient as possible with world-
wide energy cost increase and supercomputers bottlenecked by power supply in their
quest for zettascale. Supercomputers in TOP 500 are approaching zettaflop (10*
floating point operations per second) and their energy consumption is far above a
single nuclear plant reactor (around 1000MW) [106]. Dan Ernst [50] justifies the
industrial success of a memory technology based on power consumption (W) and
cost ($) at identical performance goals. He explains the adoption of HBM in the
HPC landscape because HBM2 and HBM3 generations enables 6 to 8 MW for 200
PB/s while DDR4 and DDR5 require 47 to 55 MW to achieve the same bandwidth.
More and more backends and interconnect systems are built with power and heat
as constraints and rely on low power mode |111, [82] to reduce both.

1.2.8 Additional properties

Many other memory properties such as pattern performances (random vs se-
quential), endurance (SSD wear-leveling), Error correction (ECC), data replication
(RAID devices), data persistence, bandwidth evolution under concurrency (scala-
bility with the number of threads) or encryption (SGX) exist though these are not
detailed because they are less relevant for our study of Heterogeneous memory.

In this section, we have reviewed some of the properties of memory and 10 back-
ends. We have illustrated these properties with different memory backends. Memory
heterogeneity is often observed as differences in the average latency of all operations
on the backend. These limited view of heterogeneity is reflected in memory topology
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1.2. HETEROGENEOUS PROPERTIES OF MEMORY BACKENDS

tables (see which only report a subset of the various properties of heteroge-
neous memory. However, heterogeneity can be captured notably in the differences
between load and store latencies, in load and store throughput, in the backend paral-
lelism, its lifetime, persistence guarantees, and operation granularity. Additionally
to these properties, which directly impact the developer, power consumption and cost
have also been shown to impact the success of a memory backend and guide its use
in the datacenter. All these properties are the result of hardware implementation
choices in communication facilities and memory backends which are presented in
the next two sections.
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1.3 A review of common memory backends

In this section, we present some of the memory backends available in modern
computers to review how their properties is best leveraged. There exists other back-
ends, which are still being developed (Phase-change memory, Z-RAM) which are
not reviewed in this section because many things are left unclear regarding their
future adoption. Moreover, there exists memory backends that target specific use
cases (LPDDR for mobile, GDDR for GPU), which are outside the scope of this
thesis. We rather focus on CPU caches memory, byte-addressable volatile mem-
ory, high-bandwidth memory, byte-addressable persistent memory backends in a first
time. Then, we review memory backends based on interconnect networks or fabric
networks with non-uniform memory architectures (NUMA) and remote direct mem-
ory accesses (RDMA) since the use of these networks introduce new heterogeneity
challenges for software developers.

1.3.1 Byte-addressable volatile memory

Random access memory is the most common volatile memory backend used in
servers. CPU issues accesses to RAM using addresses. These addresses are trans-
lated to a physical storage unit named memory cells using a component named
address decoder. Thus, RAM can be represented as a matrix of memory cells ac-
cessible using row and column identifiers. The remainder of this section presents
multiple Random Access Memory available suited for different use cases such as

SRAM for CPU caches and SDRAM for main memory.

1.3.1.1 SRAM, CPU caches memory

Static RAM (SRAM) is a low latency and low power RAM technology. Data
stored in a SRAM memory cell remains available with no refresh required. The
main drawback of SRAM is that memory cells are made of 4 to 6 transistors which
impose high cost for lower storage capacity.

SRAM is commonly used today for CPU caches because of its high cost-per-
capacity but high-bandwidth and low latency.

1.3.1.2 DRAM, early main volatile memory

Contrarily to SRAM, Dynamic Random Memory Accesses (DRAM) relies on
different electronic components named capacitors instead of transistors. Capacitors
enable to reduce the cost of memory capacity however charges in capacitors leaks
over time and thus require refreshing contrarily to SRAM. DRAM refreshes consume
more power and causes slower memory accesses than SRAM. This refreshes are
scheduled by the DRAM controller which tries to avoid conflict with ongoing reads
and writes.

In order to provide higher storage capacity, DRAM also needs to reduce the
number of pins encoding an address. This is achieved using Index multiplexing by
using two clock cycles to read a single address.
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DRAM has been widely used in computers prior the 2000s as a backend for main
volatile memory. However, main memory has become a bottleneck with processor

speed increasing very quickly (see §1.1.2)).

1.3.1.3 SDRAM and DDR RAM, main volatile memory

A problem with DRAM is that they were asynchronous meaning that the CPU
required to access DRAM pins with its own time management. This caused the
memory bus to be unsynchronized with DRAM bottlenecking high-data transfers
for serial accesses. SDRAM has been proposed as a logical evolution of DRAM to
increase memory speed and simplify the memory interface [94]. SDRAM proposes
to share the bus clock between SDRAM, CPU and chipset at given frequency.

Moreover, SDRAM supports multiple banks on a single chip which enables to
process multiple memory commands in parallel. Indeed, even if all banks share
the same pins, each memory bank is able to treat memory commands in parallel
which enables pipelining memory commands (e.g. precharge, row and column indices
selection).

DDR RAM is an improvement over SDRAM which doubles the speed by trans-
ferring two data words per clock cycle instead of single word for SDRAM. It is being
used as the de facto standard for main volatile memory in modern computers.

1.3.1.4 HBM, High-bandwidth memory

GPUs have become popular accelerator used for multiple high performance and
Al workloads as a way to deliver efficient matrix computation. GPUs ability to de-
liver lots of operations per time unit also causes new challenges to store information
with high bandwidth.

HBM leverages a new memory technology named 3D stacked memory which
stacks DRAM dies vertically to gain more memory density [99]. The high bandwidth
of HBM memory is due to memory being stacked on an interposer component close to
the processor (GPU) contrarily to GDDR (Graphics Double Data Rate) historically
used in GPUs. The technique has now been used for DRAM too.

HBM has been commercially introduced for GPUs on AMD’s Fiji GPUs and
Nvidia’s Pascal GPUs but also for CPU with Intel Xeon Phi Knights Landing (KNL)
[128] famous for supporting AVX512 vectorized instruction set. It has been adopted
in A64FX the ARM architecture for Fugaku supercomputer [129] with a reported
bandwidth of 1024 GB/s. HBM has been adopted mostly for GPGPUs and CPU
with Vector Extensions.

1.3.2 NVDIMM, byte-addressable persistent memory

NVDIMM is a new hardware released by Intel under the name of Intel Optane
Memory leveraging 3D XPoint Memory. These DIMMs provide byte-addressable
persistence with lower latency than NVMe but higher latency than DRAM. Intel
Optane is more efficient (lower latency and higher bandwidth) for reads than for
writes especially when thread concurrency increases [74]. This is due to efficient
sequential prefetching with read-ahead. The access pattern is also important as
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Izraelevitz et al.[74] reported that sequential access pattern can yield up to 2x better
latency than random access pattern thanks to adjacent requests merging. Byte
addressable persistence has led to many scientific and industrial contributions, but
these are out of our scope. NVDIMMSs have been discontinued in 2022 and are
expected to be commercialized again with the advent of CXL.mem devices (Compute
Express Link) in the next few years (see §1.5.3).

1.3.3 NUMA, byte addressable, cache coherent remote mem-
ory accesses

NUMA machines were first commercialized in the 1990s following the logic of
scaling of the number of cores on processors. NUMA machines offer the possibility
to aggregate in the same machine a set of nodes of CPU, memory and interconnect
resources. It enables any NUMA node of the machine to access resources from
another node at the cost of higher latency and reduced bandwidth. A set of NUMA
machines known as ccNUMA quickly started to implement cache coherency protocol
to allow processor from different nodes to access memory. Cache coherent NUMA
machines are now the de facto commercially available NUMA machine.

1.3.4 SSD persistent storage

Solid State Drive (SSD) are a set of drives that only rely on electronic circuitry
for persistent storage. They classically rely on Flash Memory, but Intel has also
released Optane SSD leveraging 3D XPoint technology, which performs better at
low access granularity [164]. SSD provide lower latencies than Hard Disk Drive
which require long seek time for moving read head to particular locations on the
disk. Initially, SSD relied on AHCI controllers to perform IO operations over a
SATA bus. However, AHCI is a serial controller (single hardware queue), which
performs sequential 10 operations. Newer SSDs rely on NVMe interface on top of
PCle bus to offer parallel accesses to SSD.

1.3.5 RDMA, remote memory accesses using PCle DMA

Remote Direct Memory Access (RDMA) refers to a set of protocols which can
perform remote memory operations without involving the destination processor.
Because of its high throughput and low CPU overhead, RDMA has been widely
used in High Performance Computing frameworks such as Message Passing Interface
(MPI). It is also widely used in storage systems for Distributed File Systems [101] or
disaggregated storage such as iISCSI Extensions for RDMA (iSER) [73] and NVMeoF
[112]. Most common RDMA protocols are Infiniband, iWARP, RoCEv2. Other
implementations exist mostly for HPC use cases such as the Tofu interconnect.
There exists different vendors of a protocol.

Networking protocols are built as layers composed using encapsulation. A classic
model of networking distinguishes physical layer, link layer, networking layer and
transport layer. Each networking layer offers different services.
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One of the key feature of RDMA networking is that the entire networking stack
from physical to transport layer is embedded into the hardware. This enables very
efficient buffer delivery between hosts at the cost of flexibility.

Multiple evaluations [139, 88, [151] of RDMA latency and bandwidth are available
for older cards generations. They show that RDMA cards are able to deliver close
to 1 ps latency for one-sided operations of 64 B messages. Similarly to NVDIMM,
RDMA may offer heterogeneous performances between read and writes operations.
Kalia et al [80] and Herd [81] observe that RDMA only supports reliable reads but
it can support both reliable and unreliable writes. Herd further observes that for
messages under 256 bytes, unreliable and reliable writes offer 34 % higher throughput
than reliable reads. Herd explains the difference because read operations need to
maintain a state for the operation at RDMA level and PCle levels in order to get
the response. They observe a limited number of 16 concurrent read requests in their
RNICs. They further notice that the average unreliable RDMA write operation
latency is half the average latency of RDMA reliable read operations because it
uses half the PCle round trips since it does not require acknowledgement.

1.3.6 CXL

Compute Express Link (CXL) [34] is a recent industry standard uniting multiple
chip vendors in a consortium giving it lot of credits. The consortium has proposed
a specification for a cache coherent interconnects. CXL provides a unique standard
to solve multiple challenges in the use of new hardware such as cache-based accel-
erators (SmartNICs) (type 1 devices), memory-based accelerators (ASIC, FPGA,
GPGPU) (type 2 devices), and memory pools (type 3 devices)

There exist already three major versions of CXL. CXL 1.1 and CXL 2.0 rely on
PCle 5 while CXL 3.0 is expected to rely on PCle 6.

1.3.7 Synthesis and order of magnitudes

Heterogeneous memory is defined by the variations in /O Bandwidth and 10
latencies across the different backends. Capacity is an important aspect of an het-
erogeneous memory technology since it may condition the access semantics. Par-
allelism or Access Granularity also impact performances by supporting concurrent
operations or by requiring smaller number of round-time-trips to transfer a mes-
sage [80]. Cost, Power are important factor of adoption of heterogeneous memory
technologies.

This memory heterogeneity is commonly represented as a triangle with the lowest
access latency represented at the top of the triangle and highest access latency at the
bottom of the triangle. Although this representation hides key performance metrics
of memory heterogeneity such as read-write latency differences and the bandwidth
advantages some memory offer with similar latencies. Thus, in Table[1.1] we propose
another imperfect aggregation of data to represent memory heterogeneity.

Table summarizes bandwidth and latency orders of magnitude aggregated
from various sources for different memory technologies.

The figures provided in the table Table only provide order of magnitude
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max read max write | Avg random | Avg random
bandwidth | bandwidth | load latency | write latency
(GiB/s) (GiB/s) (ns) (ns)
local DDR4 120 [75] 140 [75] 80 [75] 90 [75]
DIMM (6 channels)
remote DDR4 40 [75] 15 [75] 180 180
DIMM
Optane NVDIMM 7 [75] 2 [75] 300 [75] 90 [75]
(6 channels)
Flash SSD 3.5 [164] 2.7 [164] | 200,000 [164] | 20,000 [164r
(NVMe)
HBM?2 600-1000 600-1000 100 100
[124] [124] [172] [172]
RDMA Mellanox | 0.3 [151,181] | 0.5 [151] [ 1000 [151,[81] | 1000 [151][81] |
Connect-X3
PCle 3 DMA 5-6 [108] 5-6 [108] 450 |108§] 550 [108]
local mem
CXL.mem 300 [104] 300 [104]
(with RAM)

Table 1.1: Read/Write latency for 64B random accesses of various memory tiers

however summarizing the differences in this table introduces a bias. Indeed, for a
same memory backend different versions of hardware controllers, interconnects or
fabrics introduce different results. Overall bandwidth and latency values may vary
depending on the degree of operation concurrency [97].

Reported latency values are average while various work [97] made a point about
application performances being highly correlated to tail latencies. Moreover, bench-
marking independently read and write latencies hides bottlenecks introduced when
these operations are performed concurrently because of serialization costs [97].

Extra care must also be granted to reported bandwidth values since bandwidth
has scaled up very quickly for the past years by using more queues. Memory con-
trollers (HBM, DRAM, ...) typically refer to queues as channels while PCle refer
to lanes. For instance, memory bandwidth for PCle backends has doubled every few
years and similarly DDR4 bandwidth grows linearly with the number of channels.
Another influence is DDR frequency determining the number of commands it can
perform per seconds.

Additional important operations exist for some of these backends like erase on
storage backends or atomic operations in RDMA for which latency and bandwidth
has not been reported. Finally, these figures have been aggregated from different
papers using different hardware, software stacks (OS, libraries, ... ).

12 Yohan Pipereau



1.4. RESOURCE DISAGGREGATION

1.4 Resource disaggregation

Now that we have presented the key trends in memory usage and main memory
technology, this section reviews the interest of resource disaggregation, a recent
trend to improve resource usage in the rack. Resource disaggregation is the idea of
isolating server resources into different resources connected through a high-speed and
low-energy interconnect. Resource disaggregation is often considered as the separa-
tion of four class of resources: First, there are compute units which include CPU
but also processing unit used as accelerators like GPGPU or TPUs. Second, there
are memory resources which are becoming more diverse as described in section [1.5
Third, there are storage resources ranging with Magnetic Tapes, Hard Disk Drives
and Solid State Drives with SATA or NVMe interfaces. Fourth, some scenarios
have considered network disaggregation has a use case though it has been left mostly
unexplored.

In this section, we first review the benefits of using remote resources in datacen-
ters to improve resource usage. Second, we discuss remote storage solutions that
have been proposed since the 2000s and that have paved the way to memory disag-
gregation. Third, we review the proposal of a new rack-scale architecture around
2015 where compute, storage, memory and network resources are disaggregated in
different servers. Fourth, we discuss a realistic architecture where servers maintain
their set of resources (compute, memory, storage, networking) to be shared between
servers in the rack.

1.4.1 The benefits of resource disaggregation

Resource disaggregation, whether it is storage disaggregation or memory dis-
aggregation claims multiple benefits over current server architecture aggregating
compute, storage, memory and networking cards in the same server. This section
reviews the main benefits of resource disaggregation, which are independent re-
source scaling, higher resource usage, isolated fault tolerance domains, reduced data
migration cost and the possibility of using larger capacities.

1.4.1.1 Independent capacity scaling

One of the promise of resource disaggregation is to offer independent capacity
scaling. Current server architectures aggregating all resources together needed to
upgrade the entire server and all its associated resources to upgrade a single resource.
For instance, Storage resources can also be upgraded independently by aggregating
storage servers in storage pools handling the logics for growing, shrinking, replicat-
ing ....

1.4.1.2 Higher resource usage rate

Storage disaggregation helps to achieve higher resource usage by avoiding local
servers over-provisioning. Indeed, disaggregated architecture can hot-add and hot-
remove resources during the execution by leveraging pool abstractions. For example,
storage disaggregation supports expansion of storage capacity at runtime. Thus, it is
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possible to register a new filesystem mount point or to attach a new remote storage
device during the execution without shutting down the machine.

1.4.1.3 Isolated fault tolerance domains

Servers using attached storage provide fault tolerance by using block redundancy.
However, because storage and other hardware resources (CPU, memory, networking)
are collocated, a VM can be made unavailable if one of the other hardware resources
is faulted.

1.4.1.4 Lower data migration cost

Separating resources enables to easily attach and detach resources to avoid data
migrations. It is highly desirable for live virtual machine migration by avoiding data
copy and preferring reference copy. Storage disaggregation has already proven it can
reduce virtual machines migration time by reattaching source node storage on the
destination node.

1.4.1.5 Larger capacities

Disaggregation solutions often target very large memory capacities in a scale-up
approach. The Machine from HP Labs ™[83| |142] attaches processors of multiple
nodes to a large fabric-attached shared memory pool of 160 TB of DRAM.

1.4.2 The existing storage disaggregation

The idea of aggregating pools of resources on a remote shared instance has al-
ready been exploited for storage with distributed file systems and disaggregated
block storage. In the following paragraphs, we detail the techniques proposed by
disaggregated storage.

1.4.2.1 distributed file systems

First proposals for storage disaggregation proposed filesystem abstraction over a
network fabric. Early proposals are NFS [109], which allows multiple client machines
to mount a filesystem and perform POSIX-like operations on files. Newer projects
have emerged to offer higher bandwidth and leverage existing RDMA fabrics like
Lustre [101] or NFSv4 [63].

Filesystems provide easy and standard abstractions however it provides a large
set of metadata services linked to dentry and inode abstractions (naming, access
control, ...). These metadata services, which mostly comply with POSIX filesystem
standard, require multiple round time trip to perform simple IO operations. Sim-
ilarly, distributed file systems offers data services like journalling and structured
block layout. Some use cases like storing virtual machines images do not need this
cumbersome layer.
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1.4.2.2 disaggregated block storage

Distributed file systems expose file system interfaces which are more or less
POSIX compliant. However, relying on file system interfaces is not always relevant
and some use cases require a simpler block interface. One of the reason to rely
on disaggregated block storage is that file system interfaces usually require multi-
ple additional operations which are not required with block level storage. Another
reason to use disaggregated block storage is that the client-side of distributed file
systems requires more logic than block layer storage. Thus, it is more challenging
to support distributed file system clients in server firmware prior to OS boot. This
causes a bootstrap problem to read operating system binary and makes disaggre-
gated block storage an interesting solution for an operating system working on fully
disaggregated block storage.

Multiple block abstractions have been proposed to perform disaggregated storage
accesses. In the 2000s, iSCSI |169] was first proposed by porting SCSI protocol
encapsulation over the internet. The protocol has later been extended to work
with a RDMA fabric known as iSCSI Extensions for RDMA (iSER) [73]. Newer
proposals have emerged recently with NVMeoF [112] which offers the benefit of
NVMe parallelism to disaggregated storage.

These proposals offer very raw IO storage mechanisms however additional storage
services are desirable in many cases. Additional service include support for filesystem
abstraction with support for naming and metadata as in Lustre [101] or HDF'S [133].
Other solutions provide fault tolerance like CEPH [159].

1.4.3 Disaggregated Memory

Far memory or disaggregated memory refers to any systems using memory of a
remote server. The term is used interchangeably for techniques accessing remote
memory using IO semantics |7, 61] (i.e. explicit IO operations) or cache semantics
[34, [28] 160] (i.e. CPU load/store). The same terminology has been used by work
permitting shared accesses to remote memory |28, 5| 34] and work using partition-
like accesses [61}, 7). In particular, over the past few years, multiple hardware vendors
have been working together to build hardware interconnects between processors
and remote memory. We review these interconnects in more details in section [I.5
In particular, among the diversity of proposals, CXL [34] is emerging as the de-
facto standard for disaggregated memory accesses with promises to support remote
memory accesses with 300 ns latency and high memory bandwidth. We propose in
chapter 4] a thorough review of disaggregated memory literature and we review in the
following two paragraphs how disaggregated memory can be used in two different
way with rack-scale and resource mutualization architectures.

1.4.3.1 Rack-scale architecture

Resource disaggregation is at the core of rack-scale architecture. Rack-scale
architecture [71] is a proposal to have servers with highly heterogeneous resources
like The Machine from HP Labs ™. Rack-scale servers offer a resource in larger
capacity than classic commodity servers to permit independent resource scaling.
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However, rack-scale architecture requires a massive shift in server hardware and
it has not seen production adoption so far. Physical limitations may also appear to
build large specialized servers. For instance regarding compute blades, it may be
hard to achieve cooling on a dense set of compute units. Concerning memory blades,
there is a memory density limit because memory relies on capacitors which have not
shrinked for ten years contrarily to transistors. Memory blades may also offer a
reduced set of compute units, but processors have a limited number of memory
channels which may still require a dependent scaling of compute units with DIMMs.
It is not clear yet how servers will deal with these limitations, but more feasible
architecture is to mutualize resources across the rack.

1.4.3.2 Resource mutualization architecture

Some proposals [95] build on top of commodity servers and propose an approach
around resource mutualization where some dedicated resources of different servers
are aggregated into dynamic pools. This approach particularly applies to mem-
ory disaggregation. This approach can be seen as the overall memory usage across
servers by aggregating leftovers. While early prototypes left memory sharing feature
aside it is a desirable feature for such architecture to reduce potential fragmenta-
tion and avoid partition based schemes. It appears, shared memory can also help to
implement rack-scale communications across servers. The advantage of this architec-
ture is to maintain current local memory bandwidth and latency by avoiding the cost
of systematic fabric-attached memory accesses. This approach remains compatible
with rack-scale architectures. It has mostly focused industry efforts on building new
low-latency high-bandwidth interconnects for various set of accelerators (GPGPU,
TPU, smartNICs, ...) while extending memory capacities.

1.5 Cache coherent interconnects

As detailed in previous sections, there exist a large diversity of memory backends
and techniques to mutualize rack memory. More and more processors (SmartNIC,
CPUs, GPUs, TPUs, ...) and caching devices want to uniformly share access
to these memory backends. In order to maintain high bandundth and low latency
whatever the backend, these processors usually rely on hardware caches. However,
this ideal configuration where processors share access to a memory region through
a shared memory region causes a well-known problem of incoherent memory where
processor caches observe different values for a same cache line.

In order to solve this incoherent view, hardware vendors have proposed processor
interconnects to implement a transparent algorithm between CPU caches to maintain
a coherent view of memory between processors. Since the early 2000s, CPU vendors
have been working on improving bandwidth, latency overhead and scalability of these
interconnects for multiprocessor architectures (SMP or NUMA). More recently, mul-
tiple research prototypes and hardware vendors have worked towards building off-chip
cache-coherent interconnects to interconnect multiple devices inside a server but also
between different servers. Proposed solutions leverage programmable switches [150,
90] or cache-coherent hardware interconnects (28, |156]. These prototypes are re-
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visiting a large part of the literature on interconnect networks with new scalability
challenges.

In our context of disaggregated memory, cache coherent interconnects enable mul-
tiple compute nodes to perform transparent and coherent remote memory accesses
on a shared segment. In this section, we discuss the historical bus abstraction before
defining interconnect networks and their usage in modern computers. In particular,
we focus on existing ccNUMA interprocessor interconnects and next-generation host
to device cache coherent interconnects.

1.5.1 Interconnection networks: from the bus to the inter-
connect

In the following paragraphs, we review the existing communication primitives
used in interconnect networks and the different challenges and trade-off in the design
of these primitives.

1.5.1.1 Challenges and solutions of the historical bus abstraction

Before the 1980s, computers relied heavily on a simple interconnect abstraction
named buses. A bus connects one or multiple modules (processors and memory)
on a single shared channel providing broadcast semantics. [42] Broadcast means
that every message is sent to all the modules which are part of the bus network.
Additionally to the broadcast property, buses also implement message serialization
by letting a single module lock the bus until all modules have replied or acknowledged
the request. Thus, buses guarantee total order broadcast meaning that all correct
nodes receive the same sequence of messages.

When multiple modules (e.g. processor, DMA controllers, memory controllers)
are connected to the shared bus, it is possible that multiple modules try to send
messages on the bus concurrently. In order to avoid conflicting accesses to the bus,
buses implement a mechanism to grant exclusive ownership of the bus to a module
to initiate a transaction.

In interconnect network, the assignment of the shared bus to one of the module
is named arbitration. The modules requesting ownership of the bus are named
requesters and the component responsible for granting the ownership to one of the
module participating in the bus communications for a lapse of time is named arbiter.
There exists different architectures for arbitration such a centralized arbitration with
a central arbiter (usually the bus controller) or distributed arbitration where a bus
master is elected at the beginning of new epochs. Once it has received arbitration,
a module becomes bus master and can initiate a transaction.

Buses are a simple communication abstraction but they help understand some
of the ordering problems relevant to implement cache coherency protocols. The de-
sign space of centralized or distributed bus arbitration and the implementation of
exclusive ownership also helps to understand in-network cache coherency. Typically,
bus broadcast communications enable to implement basic cache coherency protocols
thanks to by-design traffic snooping. However, buses also suffer from bad perfor-
mances because they are serial communication medium by design and they do not
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operate at high speed [42]. This has led to the advent of switched interconnects
with unicast communication to provide performance, cost reduction and scalability
[42] which are described in the next section.

1.5.1.2 Interconnection networks usage in modern computers

An interconnect or interconnection network is a programmable system that trans-
ports data between participants. [42] Contrarily to a bus, an interconnect allows
point-to-point interconnection by relying on switches. Point-to-point communica-
tions reduce the number of messages and enable higher-parallelism by avoiding the
global bus lock. Thus, interconnects have been widely adopted because they offer
better scaling. A widely used interconnect is Peripheral Component Interconnect
Express (PCle).

1.5.2 Computer interconnect

In §1.5.1 we have reviewed, bus and interconnects, the main abstractions used
in computer interconnects. In the following paragraphs, we discuss how computer
maintains a simple load/store abstraction through the use of multiple interconnects
in modern and future computers.

We present the main historical and current solutions used from the legacy system
bus, to the scalable interprocessor interconnects for ccNUMA before a large overview
of next-generation inter-server interconnects.

1.5.2.1 System Bus

From 1995 to 2008, CPU vendors (Intel, AMD) have relied on the Front-Side Bus
(FSB) also named System Bus to interconnect the processor with the northbridge
where the memory controller was located. It was identified as a major bottleneck
for memory operations resulting in processor being frequently idle. This was largely
caused by bus networking which required single memory operations at a time while
processor were supporting multiprocessing.

1.5.2.2 Interprocessor Interconnects

In 2001, AMD proposed a more efficient but also more expensive alternative
to FSB with the Hypertransport interconnect. In 2009, Intel introduced a new
cache coherent interconnect named QPI 1.0 known at that time as Common System
Interface (CSI) [82] to support distributed shared memory. QPI has to support a
large range of configuration from servers with a few sockets which require high
bandwidth and low latency to servers with many processors which require good
scaling.

These new interprocessor interconnects rely on reliable message passing to com-
municate between each others. [10] Messages are encapsulated in a layered protocol
with physical, link, routing, transport and protocol layers each implementing differ-
ent services for communications.
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Hardware cache coherency protocols differ across interconnects. Historically,
processor implemented MESI cache coherency protocol on the FSB bus. However,
since MESI protocol generates undesired traffic when a shared cache line is requested
with all processors responding to the broadcast request, new protocols have been
adopted on interconnects.

In QPI 1.0, Intel introduced source snooping MESIF by introducing a new F
state for Forwarding. [82] When a cache line is in F state it must invalidate other
copies to be allowed to write.

Concurrently, AMD hypertransport interconnect has relied on home snooping MOESI
cache coherency with the introduction of the O state for Qwnership. We review some
of the existing protocols in later sections.

1.5.2.3 Rack interconnects

Over the last few years, multiple cache coherent interconnects have been pro-
posed including Compute Express Link (CXL), IBM Coherent Accelerator Interface
(CAPI), Cache Coherence Interconnect for Accelerators (CCIX), AMD Infinity Fab-
ric, NVIDIA NVLink. The development of these new cache coherent interconnects
is motivated by new workloads notably due to Artificial Intelligence. However, some
standards, such as CXL or CCIX, have made room for other use cases which may
benefit from a cache coherent interconnect such as SmartNICs or Memory extension
cards. All these interconnects face similar problems. One of this problem is that the
support of multiple ISA which is hard because there exist different cache coherency
protocol implementation, which require dedicated logic and vendor modifications to
processors. [140] Another problem is to scale off-chip coherency protocols [140].

CAPI is a standard designed by IBM to attach accelerators (FPGA, GPU) to
the host system through a cache coherent interconnect. The first implementation
were built on top of PCle protocol. An extension of CAPI known as OpenCAPI
which supports multiple accelerator configurations and memory expansion has been
proposed in a standard. OpenCAPI is not based on PCle even though it shares
multiple similarities. IBM released a version of OpenCAPI in Power9 processor
making it the first commercially available processor to offer support for hardware
disaggregated memory through the Open Memory Interface (OMI) to attach DRAM
to OpenCAPI bus. OpenCAPI ended up merged with the CXL standard in 2022.

CCIX [141] is an open-standard standard created to maintain accelerators and
processors in the same cache coherency domain. It aimed at supporting multiple ISA.
It is built as an extension to PCle protocol. Similarly to CXL, CCIX supports three
different devices: accelerators, accelerators with memory and expansion memory.
CCIX defines two components: CCIX agents (devices) and host systems. As stated
in the specification [141], CCIX requires changes to the host system to route memory
reads and writes to CCIX agents. Moreover, processor caches must respond to snoop
requests from CCIX agents. It seems that it did not receive update since 2021 as it
is challenged by CXL consortium.

NVLink is a proprietary cache coherent interconnect designed by Nvidia for
cache coherent shared memory between GPUs and GPUs and theoretically between
CPUs and GPUs. Historically, NVIDIA has provided a Unified Virtual Addressing
(UVA) abstraction for direct GPU-to-GPU transfers implemented on top of PCle.

19 Yohan Pipereau



1.5. CACHE COHERENT INTERCONNECTS

However, PCle has been identified as a bottleneck for large data transfers between
GPUs thus NVIDIA has introduces NVLink for GPU-GPU communications. Thus,
NVlink is one of the interconnect which does not rely on PCle protocol and it
actually claims higher throughput although PCle throughput varies a lot depending
on the generation. Contrarily to the other interconnects, NVLink has been designed
with a focus on GPU accelerator and it does not target memory extension cards or
SmartNICs such as CXL.

CXL is an open-source industry standard. It extends PCle protocol to provide
a cache coherent interconnect for various use cases. It has emerged as the de-
facto standard among other open-source proposals, which also targeted multiple
instruction set architecture (ISA). We review CXL interconnect in more details
in next sections as it appears as the next-generation standard for cache coherent
interconnects.

1.5.3 CXL, the next-generation cache-coherent rack-scale
interconnect

In §1.5.2.3] we have reviewed various rack interconnects for cache coherent ac-
cesses. In this section, we have shown that CXL is left as the de-facto standard
among a larger set of interconnects. This section presents CXL in more details with
a review of early prototypes and early order of magnitudes for these prototypes.

1.5.3.1 Early Prototypes

DirectCXL [60] is the first CXL.mem research prototype published based on
CXL 2.0. It uses a 16 nm FPGA which implements a CXL controller to manage
CXL endpoints and a DRAM controller to attach 8 DRAM modules of 64 GiB.
They build their own RISC-V 4 core processors to implement a CXL root port in
the Last Level Cache (LLC). In their CPU, they use 16 Miss Status Hold Registers
(MSHR), a hardware structure to track LLC misses and exhibit CPU stalling when
a cache access spans on more than 16 cache blocks.

Similarly to PCle, host CPU will have one or multiple CXL root ports which initi-
ates a CXL topology. Topology is composed of CXL switch with a downstream port
(DSP) and upstream port (USP) and CXL endpoints where devices are connected.
Root port location and address space is determined during CXL enumeration.

1.5.3.2 CXL performances

Direct CXL [60] reports 328 cycles average latency for 64B random access against
2129 average latency for Connect X-3. DirectCXL shows that CXL is close to local
DRAM latency for many applications because it benefits from going through CPU
caches. They also show that CXL latency is steady compared to RDMA which has
large distributions because of memory translation caching.

Pond [95] estimates that CXL memory accesses on memory located in the same
NUMA node with 8 to 16 sockets will cost 70 to 90 additional nanoseconds to
memory accesses. They also estimate that rack scale memory accesses will add
around 180 nanoseconds overhead.
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1.5.4 Defining cache coherency

We now review how cache coherency is implemented in general, and then we focus
on how it is implemented in rack-scale interconnects. In a system with incoherent
caches, a processor would locally mutate a cache block in a few CPU cycles without
immediate propagation to shared memory since this would cost thousands of CPU
cycles. The mutation without any coordination would remain local with no visibility
for other processors. A cache coherency protocol aims at tackling this issue.

Cache coherency can be defined using two invariants:

e Invariant 1 - Single Writer Multiple Reader: "For any given memory
location, at any given moment in time, there is either a single core that may

write it (and that may also read it) or some number of cores that may read
it.” |137]

e Invariant 2 - Data Value Invariant: ”"The value of a memory location at
the start of an epoch is the same as the value of the memory location at the
end of its last read—write epoch.” [137]

A coherence transaction is a distributed transaction which requires serializing
conflicting transactions.

1.5.5 Cache coherency protocols

After defining cache coherency, we review the main ideas used to design cache
coherency protocols. First, we review some of most common states used to main-
tain cache line coherency with a state machine. Then, we discuss two of the main
architectures which are snoop-based protocols and directory-based protocols.

1.5.5.1 Cache coherency state machine

Cache coherency protocols are commonly represented as a finite state machine
to capture states and transitions between them. Common states include: Modified
(M) to indicate that the cache block can be read or written by the core. Shared (S)
to indicate that one or multiple cores can perform read-only accesses. Invalid (1)
indicates that the block is not in a cache or not in a valid state, so no operation
may be performed on the block. OQuwned (O) indicates that the block is owned by a
core, but other caches have a copy too. Ezclusive (E) is an optimization state used
when a CPU issues a load but is the only reader of the block. This state enables
silent transition to Modified state with no additional traffic.

For example, MESI protocol is widely used on multiprocessor cores (SMP) archi-
tectures and is usually extended either with Owned state (MOESI) or with Forward
state (MESIF) as in Intel QPI [10]. Different cache coherency protocols may also
be used at difference cache levels.

1.5.5.2 Bus Snooping protocols

Snooping-based cache coherency works by having each cache controller use broad-
cast requests and get unicast response. Broadcast requests are serialized on the
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network usually thanks to bus arbitration which enable total order broadcast guar-
antees [137]. Total order broadcast offers convenient properties like serialization of
coherency transactions and enables each cache controller to receive the same message
in the same order on all cache controllers. Then cache controllers are responsible to
implement the protocol. In snooping protocols, a block state is distributed across
all cache controllers [137] Thus, when a processor issues access to a cache line, the
state of the cache line is known by all processors. However, total order broadcast
scales poorly with the number of node and this result in snooping-based protocol to
be progressively abandoned in favour of directory-based implementations.

1.5.5.3 Directory Based protocols

Directory-based cache coherency protocols on the contrary of snooping-based
cache coherency issues unicast transactions to the cache controller which is the
home of the block. The home is responsible for looking through an index of cache
blocks known as the directory to determine the owner of the requests block, its state
and cores sharing the block. In directory-based protocols, block state is not main-
tained on each cache controller which is the main difference with snooping protocols
[137]. Directory cache coherency protocols do not benefit from message ordering
as in snooping protocols. However it still need to serialize two concurrent unicast
transactions on a same block. In directory cache coherency, coherence transactions
are ordered at the directory. In case of a race, one of the transaction aborts.

Directory based cache coherency generates less coherence traffic and thus offer
more scalability. It is already used in newer interconnect like UPI and provide
interesting benefit for rack-scale coherency [156]. A known inconvenient of directory-

based protocols is to require an additional message when the home is not the owner
of the block. [137]

1.5.6 DMA cache coherency

DMA controller may issue read and write operation to main memory. DMA
controller expects to read last version of data but if a processor concurrently work
on the same data it may hold it in a CPU cache in Modified state. Then DMA
controller must issue invalidation operation to read last version of the block.

x86 supports cache coherent DMA operations, but some architectures do not
support it and require explicit arbitration by the driver to let either the device or the
host access memory (dma_sync_single_for_cpu() and dma_sync_single_for_device()).

This is similar to CXL coherence biases. (see §1.5.7.1])

1.5.7 Rack scale cache coherency

For a long period, different assumptions have been made over the coherency
guarantees of disaggregated memory. Some prototypes [155] made the assumption
that disaggregated memory would let a server access another server memory in
a mutualization configuration. In this scenario, the memory server may access the
given memory buffer concurrently to other servers. In such a scenario, it is important
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that the server accessing remote memory and the server lending its memory are part
of the same cache coherency domain.

Other prototypes have assumed that disaggregated memory meant full delegation
of physical memory to one or multiple external server. This configuration means that
the server lending its memory (compute node or type 3 CXL device) is not expected
to access its memory. In such a scenario, cache coherency may still be required when
multiple servers would like to concurrently access this memory buffer.

1.5.7.1 CXL cache coherency: coherency bias and enhanced coherency

Because of the problem to scale cache coherency to multiple hosts, CXL rely on
a different scheme to ensure cache coherency.

CXL uses biases |34] which give hints about which component should pay the
cost of cache coherency. CXL proposes to rely on two biases: Host bias and Device
bias. In device bias, pages are only used by the device and the device is ensured
that the host has not cached the pages which are accessed. In host bias, pages may
be used by the host exclusively or by both device and host.

In CXL 3.0, coherency bias technique has been replaced by a new coherency
method named Enhanced coherency which is more transparent for the programmer.
Enhanced coherency relies on the ability of the device to use back invalidation to
invalidate a cache line in the host cache. It also supports, back invalidation in other
devices connected to the CXL interconnects which means that cache coherency can
be maintained with peer-to-peer communications which avoids going through the
host.

1.5.7.2 Coherency Domains

For some time, disaggregated memory has been ambiguous in the assumption
of supporting cache coherent accesses. Some works [53] introduced the idea of co-
herency domains as a set of nodes participating in the same cache coherency proto-
col. The idea behind coherency domains was to restrict cache coherency to a limited
set of nodes to enable better cache coherency scaling (even if directory-based solu-
tion already improve scalability). Coherency domains posed interesting perspective
where software would be responsible to reconfigure these dynamically coherency
domains for specific use case depending on the workload degree of sharing.

In this section, we have reviewed recent changes in hardware solutions to store
data and in interconnects. In particular, we have proposed an overview of hetero-
geneity by characterizing backends according to a larger set of properties than the
conventional view based on latency and bandwidth differences. We have also started
reviewing some of the challenges posed by sharing memory across multiple servers
with a review of existing and upcoming interconnect cache coherency protocols. In
the next sections, we will focus on the different abstractions proposed by operating
systems to use memory and newer proposals to manage heterogeneity.
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In the previous section, we have reviewed recent changes to hardware memory
backends and we have tried to present key properties of memory hardware. We
have also detailed some of the challenges to design usable and efficient memory
hardware for software. In this section, we review key mechanisms used in Linux
kernel v5.11.1 operating system. The review of these mechanisms is necessary to
understand recent software proposals for heterogeneous memory discussed in chapter
[5 and to understand our contribution presented in chapter[f] and chapter[§.

2.1 Core abstractions of Memory Management

In this section, we perform a bottom-up review of Linuz abstractions used to
build memory management. We review software-hardware interfaces such as node
abstraction, memory zones before presenting pages for address translation and kernel
memory services. Then, we present process abstractions with process address space
and process mappings.

2.1.1 Nodes

At the bottom of the Linux memory management stack, there exists a node (pg-
data_t) for each NUMA node in the system. It contains a simple integer indicating
the NUMA node and a list of zones.

2.1.2 Memory zones

A zone (struct zone) contains a list of pages (struct page). Zones are typically
bound to a zone type. There exists: ZONE_NORMAL type which contains the
largest set of pages. ZONE_MOVABLE which is memory that can be moved for
defragmentation. This memory zone is commonly used for memory hotplug and
hotunplug. ZONE_DEVICE for adding a page (struct page) for each memory de-
vices (NVDIMM) page and thus support memory management kernel services on
these devices. ZONE_DMA, ZONE_DMA32 and ZONE_HIGHMEM targets specific

device (and ancient) capabilities which are not relevant for the understanding of our
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work. Each zone has its own page allocator and carry watermarks used as threshold
for memory reclamation.

A zone groups memory in pageblocks containing 2 pages (2MiB in x86). Page-
blocks tries to group physical pages by migration type. The most important mi-
gration types (migratetype) are UNMOVABLE, MOVABLE and RECLAIMABLE
(section . Grouping pages by migration types aims at organizing the physical
address space in pageblocks which are either friendly or unfriendly to compaction or
defragmentation. It avoids interleaving pages which do not support migration with
pages which support it.

Most memory has a MOVABLE migrate type apart from some core kernel com-
ponents (memory map) which are marked UNMOVABLE. There exist a page al-
locator free list for each migrate type which means in summary that there exist a
page allocator free list for each zone and for each migrate type. When issuing a
page allocation, a flag needs to be provided (known as get-free-page flag (GFP)).
The GFP flag is converted to a migrate type and the page allocator tries to allocate
the page in the free list which satisfies best the GFP flag. For instance, page allo-
cations of user-space anonymous mappings are movable pages allocated with GFP_
HIGHUSER_-MOVABLE flag which contain MOVABLE and RECLAIMABLE flag
meaning this page likely ends up in movable free list of the buddy allocator.

2.1.3 Page

Modern processors rely on memory pages, fixed size units of memory, to translate
virtual addresses to physical addresses. Pages are the smallest unit of memory
management in the address translation mechanism.

Each base physical page (4K) is represented by a 64B kernel structure (struct page).
A struct page describes a page from OS memory management point of view. How-
ever, struct page is never directly used in the configuration of MMU (see §2.1.4).
This task is handed to special types (pte_t, pmd_t, pmu_d, pgd_t) which represents
the MMU view of a page.

Thus, struct page should be seen as a companion structure used in most of
the logical memory management algorithms. It is the metadata struct for kernel
memory management and 1O services. This structure carries atomic metadata flags
which builds an IO state machine (PG_uptodate, PG_writeback, PG_dirty) or to
provide memory hints (PG_locked, PG _swapbacked), ... A page (struct page) also
references the address space it is part of, contains the linked list to implement the
LRU.

Various abstractions are built on top of pages such as anonymous memory for
program allocations, page cache acting as an 10O cache, compound pages to aggregate
pages together, network stack pages with DMA capabilities, Thus, struct page is
a very polymorphic structure although, most pages describe anonymous memory
and page cache in common datacenter usages. Linux systematically runs a page
replacement algorithm on anonymous and page cache memory by placing OS pages
(struct page) in LRU lists (see section [2.5)).
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2.1.4 Virtual Address Space (mm struct)

As most operating systems using modern hardware, Linux rely on a virtual ad-
dress space abstraction (mm struct). Any memory access from processor to memory
whether it is privileged or not must be made using a virtual address. This abstrac-
tion is defined for each process of the operating system. The virtual address space
abstraction helps to implement isolation and memory sharing between processes.
It is also used to facilitate the implementation of process cloning. It permits to
differentiate memory reservation (allocation) from physical memory consumption.

This abstraction requires fast translation mechanism which acceleration is pro-
vided by Memory Management Unit (MMU) in a processor. Translation is achieved
through a data-structure named page table which per-process entry is loaded in a
CPU register (CR3 on Intel processors). The MMU and the operating system share
a common assumption about the layout of the translation data-structure. Modern
processors rely on a hardware caching translation unit named Translation Lookaside
Buffer (TLB) to speed up this translation.

2.1.5 Segment (vma)

Virtual address space discussed in previous paragraphs is made of VMAs. A
VMA (struct vm_area_struct) is a contiguous virtual memory range granted through
mmap system call. A VMA is bound to a unique virtual address space (struct mm_
struct), even for mappings shared between processes.

A VMA also holds the flavour of whether the mapping is file-backed or anony-
mous, shared or private. It holds a vi_ops vtable to translate memory accesses to 10
semantics. File-backed mappings will thus find callbacks to perform 1O operations
(writeback read page, ...) on filesystem backend. Segment sharing between pro-
cesses is implemented in the file (struct file ) abstraction during mmap(). Shared
mappings either explicitly manage a shared file-backed mappings or manage an im-
plicit shmemfs file for anonymous shared mappings. Indeed, shared anonymous
memory rely on same a virtual filesystem named shmemfs which is backed by a
swap device.

Historically, VM As were stored in a red-black tree and an additional linked list
to tackle the problem of slow tree traversal of red-black tree. Since the maple tree
patch set [127] VMAs are now uses a B-tree like layout.

Efficient and scalable VMAs lookup is critical for application performances be-
cause it is performed on the page fault handler path. Indeed, page fault handler
takes the read lock of mmap_lock semaphore. A VMA cache of most recently used
VMA was also used prior to its removal with the introduction of maple tree. Multi-
ple research work have focused on improving the performances of VMAs with new
data-structures [32]. Another ongoing approach named speculative fault processing
[93] tries a transaction approach by issuing page fault handling and verifying for
potential concurrent mmap_lock writers.

Operations on VMAs data-structure of a mm _struct are protected by a mmap_
sem or mmap_lock Read-Write semaphore. The critical section is entered with write
capability upon creation or deletion of a new memory mapping (insertion/deletion
of a VMA is commonly made through mmap/munmap system calls). The critical
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section is entered with read-only capability in page fault handling for example to
perform VMA walk in search of the backing VMA for the address. [

2.2 Address translation

Address translation is the service responsible for translation of virtual addresses
to physical addresses. Modern computer architectures rely on a hardware Memory
Management Unit (MMU) integrated with the CPU to perform address translation.
Linux supports software and hardware address translation for multiple architectures.

2.2.1 Generic address translation

On Linux x86, address translation rely on a shared knowledge of the page table
data-structure between hardware MMU and software. Kernel is responsible for
writing a correct translation configuration in the page table while the hardware reads
the configuration and raises interrupts with error codes upon missing or erroneous
configuration. x86 layers the page table on 4 to 5 entry levels represented by the
types pgd_t, p4d_t, pud_t, pmd_t, pte_t.

The faulting address is stored in CR2 CPU register while the address to the page
table is stored in a CR3 CPU register. A kernel thread running in privileged mode
is said to be in process context when the CR3 CPU register points to a user-space
process page table. Concurrent mutations to the page table are managed using
a multiple levels of spinlocks called to ensure better scalability. For concurrent
modifications of a PMD, a spinlock ptl is embedded in the struct page associated
to the PMD the PTE is part of. ] Ultimately, mutual exclusion is provided by the
page_table_lock spinlock in mm _struct.

2.2.2 Linear mapping

The structure used by the kernel for address translation is important for the
understanding of some mechanisms such as device hotplug and memory hotplug.
Additionally to generic address translation for user-space memory, Linux also uses
virtual addresses to read or write kernel objects. This means that the kernel also
requires page table mappings to be configured to access internal objects.

In particular, for the management in software of kernel addresses, Linux relies
on a special optimized mapping which differs from user-space processes mappings.
This mapping aims to speed-up translation of virtual addresses to physical addresses
by relying on software offset computation instead of walking the page table. The
particular mapping is named linear mapping and it maps kernel virtual addresses
starting at address V on physical address space starting at address P by applying a
fixed offset so that V= P+of fset at all times. This known offset between the start
of the two address space enables to speed up address translation. In reality, this
translation technique differs slightly in configurations where the physical address
space is not contiguous but made of several sections of contiguous physical ranges.

No VMA insertion is performed in page fault handling thus read lock is enough
2Huge page locking is skipped in our explanation for the sake of simplicity

27 Yohan Pipereau



2.3. MEMORY ALLOCATIONS

When a new memory device is hot-plugged, the kernel needs to allocate new
OS pages (struct page) to execute memory services and linear mapping need to be
expended. We discuss this in more details in the chapter dedicated to ExoVM.

2.3 Memory allocations

Kernel memory usage relies on a wide variety of memory allocators which enable
fine-grained memory usage in kernel and process contexts. In this section, we review
the different allocators used in Linuz with a review of Linux page allocator and kernel
object allocator.

2.3.1 Page allocations and buddy allocator

Linux implements a buddy allocator [87] for pages allocation. Pages are organized
as buckets of 2°7%" pages. Buddy allocator leverages a MAX_ORDER buckets of
free _area. Blocks are organized in a binary tree. Fach free_area bucket maintains a
list of free page blocks of a given order between 0 and MAX_ORDER (Commonly 11).
It also maintains a bitmap to determine if blocks are used or free. Internally, Linux
has made various modifications to adapt to Linux specificities including allocation in
atomic or interruptible context, whether direct reclamation is allowed or not. .. The
page allocator interface is:

struct page xalloc_pages(gfp_t gfp, unsigned int order)
void free_pages(struct page xpage, unsigned int order)

Page allocation has a fast path which goes through free pages and a slow path
which requires compaction or reclamation. Fast path issue the allocation request
on a target zone before issuing request on fallback zones. It uses a per-zone freel-
ist (zonelist). The slow path performs direct compaction and falls back to direct
reclamation and OOM killer described later.

The free call tries to coalesce pages originating from the same bucket (companion
buddies) together [59).

2.3.2 SLAB allocator

Linux uses a SLAB allocator [25] to perform internal kernel allocation based on
kmalloc. SLAB allocator offers caches for object of same sizes. By default, slab
allocator supports allocation classes with all power of 2 sizes from 8B to 8kiB.
Linux also supports adding specific SLAB class for object of specific sizes heavily
used like inodes, dentry and many other data-structures.

SLAB allocators have two advantages: First, it helps to reduce fragmentation
in internal kernel memory management. Second, SLAB allocator helps to speed up
allocation of resources on the critical path with per slab locking instead of global
allocator locking.
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2.4 Principles of memory reclamation

In previous sections, we have seen the core abstractions of memory management
m Linux and available memory allocators. In this section, we review how many
Linux services hook on memory allocators, especially page allocator to implement
kernel memory services. Thus, we first review how the kernel hooks on page allocator
before presenting the memory reclamation to free resources and shrink caches upon
pressure.

2.4.1 Hooking on page allocation

Memory reclamation is issued following a call to a page allocation alloc _pages
or one of its derivative. Page reclamation designates the set of mechanisms used by
the kernel to retrieve memory.

2.4.2 Background reclamation and direct reclamation

Linux distinguishes two different context for page reclamation: background recla-
mation (kswapd) and direct reclamation (try_to_free _pages). Background reclama-
tion tries to maintain a set of free pages for future calls to alloc _page(). It relies on
a dedicated kernel thread (kthread) named kswapd which is woken up when there
is memory pressure and previous memory reclamation mechanisms failed.

Direct reclamation happens directly in the context of a failure in page allocation.
It is thus common that such a failure occurs in the page fault handling. Direct
reclamation should be avoided as much as possible since it slows down significantly
page fault handling which blocks further progress for the application thread.

Background and direct reclaim eventually share the same code path which per-
forms a layered reclamation.

2.4.3 Layered reclamation

In Linux, page reclamation adopts a hierarchical methodology with decreasing
speed to free pages. First, it begins by shrinking preallocated buffer pools like
SLAB caches (inode, dentry and other object caches). Second, it tries to free pages
of file-backed process mappings contained in the page cache. Page cache is a good
second choice since it is composed of a quickly reclaimable subset of pages (clean
pages) and a second slowly reclaimable subset (dirty pages). Third, page reclamation
triggers a mechanism named swapping which targets anonymous process mappings.
It will offload a selected set of pages to be evicted on a backend using 10 semantics.
Finally, if all previous mechanisms fail to make room for pages it resorts to calling a
mechanism named OOM Fkiller which will destroy lower priority processes to retrieve
memory.

2.4.3.1 SLAB reclamation

To speed-up SLAB allocation, the kernel maintains small pools of pre-allocated
objects. These objects may be reclaimed using shrinkers, a generic interface where
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clients (e.g. most file systems, KVM MMU, balloon driver) register callback method
to count the number of objects to be reclaimed and a method to actually reclaim
these objects. The shrinker threads maintains a control structure with the desired
number of pages it wants to free. SLAB reclamation may not always be efficient
because of the fragmentation objects cause on pages.

2.4.3.2 Page Cache reclamation and Swap reclamation

Page cache and swap reclamation shares a lot of memory management mechanism
for reclamation. They rely on the same LRU code paths which are discussed in
section [2.5] However, page cache performs eviction of user-space file-backed pages
only while swap performs eviction of user-space anonymous pages.

A key difference between page cache reclamation and swap reclamation is how
pages are mapped to blocks. Indeed, page cache acts like a real cache, since it always
has an allocated page on the storage backend to evict its page. However, swap is
different because it supports registration of smaller storage backend than the sum of
anonymous memory used in the kernel. Thus swap requires allocation and mapping
of pages to the underlying storage backend by storing an encoding of block device
ID and offset swp_t in the page table entry.

Another difference is that clean file backed pages are always coherent with the
storage backend in page cache. In swap system, there is no guarantee that a clean
page in memory exists on the storage backend.

As described previously, page cache reclamation is very quick when page cache
owns a significant number of clean pages i.e. pages with cleared PG_dirty. These
pages are just dropped since their content already exist on the underlying backend.
However, pages which are dirty, i.e. with PG_dirty bit set in struct page require
writeback on the underlying backend.

2.4.3.3 OOM Killer

When running out physical memory, Linux Kernel provides an ultimate solution
killing a process to reclaim its memory. OOM Kkiller is called in page allocation slow
path after failing at direct reclamation and direct compaction.

Process selection is issued in select _bad_process(). It selects processes using
large amount of memory (oom_badness()) by evaluating the task Resident Set Size,
page table size and swap space used.

There exist mechanisms to avoid OOM killer to be triggered by performing checks
on virtual memory management. Typically, when virtual memory mappings resize
themselves with brk() or mremap() calls for instance, they can create memory over-
commitment scenario. This is provided by OVERCOMMIT_NEVER policy to avoid
virtual memory to create scenario which are likely to lead to overcommitment. How-
ever, this requires user space applications to perform appropriate error handling.
The default Linux policy is OVERCOMMIT_GUESS which tries to assess upon vir-
tual mappings resizing whether available memory (System RAM and Swap space)
may lead to overcommitment scenario.
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2.5 LRU based reclamation: Page Cache and Swap-
ping

In previous section, we have present an overview of memory reclamation in Linuz
kernel with a review of layered reclamation with page cache and swap reclamation.
But, page cache and swap reclamation try to perform smart selection of pages to
evict to limit performance degradation. In this section, we present how page cache
reclamation and swap share a common Least-Recently-Used (LRU) implementation
to isolate cold and hot pages. Thus, we first present the design of the LRU algorithm
in Linux v5.11.1. Then, we describe how page 10 works for swap and page cache with
a focus on swap with swap cache, backend sector allocation. Then, we quickly detail
page table entries management for swap. Finally, we review page 10 abstractions to
synchronize pages on a backend.

2.5.1 Design of the LRU page replacement algorithm

Linux uses a variant of Least Recently Used (LRU) algorithm. The goal of this
algorithm is to select for eviction the set of pages that has not been used for the
longest time.

2.5.1.1 Access bit setting

Linux tries to maintain a list of accessed pages (named referenced pages in Linux
parlance). Accessed pages are tracked by both software and hardware constructs
by setting a page flag PageReferenced in struct page flags. In Linux v5.11.1, Linux
looks for accessed pages by scanning the list of pages (struct page) in physical
memory.

Hardware is used after each processor access to a mapped page, the hardware
MMU sets access bits on page table entries (pte_t) which have been accessed. MMU
access bit setting is fast but scanning accessed pages in software requires longer time.
The access bit in pte_t is made visible to the page control struct (struct page) by
setting PageReferenced by calling page_referenced. This method leverages a walk of
reverse page mapping (struct rmap) to find all page table entry referencing the page
and returns whether the page is marked as accessed or not (page_referenced_one()).

Software is leveraged to set the PageReferenced bit flag in struct page explicitly
through mark_page_accessed for page accesses performed with no involvement of the
MMU like for file accesses (read/write system call) or when pages are swapped in,
calls to get user pages, unmapping of VMAs.

The PageReferenced bit is cleared after every call to page_referenced.

The ideal LRU where every access to a page would result in reordering pages
in the list is too expensive in practice [16]. Thus, Linux relies on periodic checks
performed in reclaim paths only and verifies accesses since last check.

2.5.1.2 Dirty Bit setting

Similarly to access bit, determining if a page has been modified is performed
by both software and MMU. Thus, Linux also tries to perform periodic monitoring
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of MMU pages (pte_t) to report dirtiness in OS pages (struct page). Linux per-
forms this update from MMU pages to OS pages when the page is unmapped from
all process page tables. The reporting procedure first retrieves the old page table
entry value (ptep_clear_flush ()) before removing the page from the page table and
invalidating the TLB.

2.5.1.3 Balancing the active and inactive lists

Linux appends all system pages (struct page) apart from SLAB pages to LRU
queues (struct list _Iru) because it can not run simply with SLAB objects evicted
on non-byte addressable backend. To detail the LRU algorithm, let us consider that
Linux relies on two queues: active and inactive (enum Iru_list). Operations on LRU
list are protected by the LRU lock, a spinlock protecting both active and inactive
list.

Reclaim threads runs through all LRU lists and try to shrink them with a page
budget. It evaluates page_referenced and mark page_accessed at every round for
each list to determine the action appropriate action to perform. Operations possible
on the pair of LRU queues are insertion, eviction, demotion, promotion. Insertion
of a new page is performed to a page to the LRU inactive list. Eviction of a page is
performed when a page is removed from inactive list and written back on a backend.
Promotion moves a page in the inactive list to the active list while demotion does
the reverse operation. Eviction, Demotion, Promotion are performed by the reclaim
thread in the call graph of shrink node.

Only a subset of each LRU list is scanned starting from the tail of the list.

2.5.1.3.1 Page Insertion. Most pages are enqueued at the head of the inactive
list and marked with PageLRU flag upon first access. This flag is used to indicate
the presence of the page in any of the LRU list (active or inactive). When a new
page is inserted in a LRU lists, the tail page is dequeued from the inactive list to
be evicted [16]. To speed-up operations and reduce lock contention, Linux actually
leverages a per CPU LRU cache to batch addition of pages to the inactive list. Most
pages are enqueued in inactive but there exists exception like pages read from swap
cache which are directly enqueued in active list.

2.5.1.3.2 Page Demotion. Moving least used pages from active list to inactive
list is called demotion and it is performed in shrink_active_list (). Pages are moved
from the tail of the active list to be inserted at the head of the active list in order
to maintain ageing order in the queues. It occurs when a previous call to page_
referenced() already cleaned the PG_Referenced bit and the page is in active list.

2.5.1.3.3 Page Promotion. Promotion describes the operation where a page
is removed from inactive list to be place in active list. A page which has already
been marked referenced and which is in the inactive list is promoted to the active
list. Promotion is performed in mark_page_accessed() which calls activate_page() if
PG _referenced bit is already set.

32 Yohan Pipereau



2.5. LRU BASED RECLAMATION: PAGE CACHE AND SWAPPING

2.5.1.3.4 Page eviction. The actual page reclamation occurs in shrink_inactive _
list () after shrinking the active list. The procedure selects a set of pages in inactive
list and call shrink_page_list () There are different cases to consider at this point.

First, for all anonymous pages (PG_anon & PG_swapbacked) which are not in
swap cache, an allocation on the swap backend is performed (add_to_swap() as de-
scribed in The allocation also sets the OS page (struct page) as dirty.

Second, If the page is mapped in the page table of one or more processes, this
method tries to unmap it in the page tables (try_to_unmap()). Unmapping of the
MMU page in page tables is performed by running a reverse map walk during which
a dirtied MMU page (pte_t) causes dirtying of its associated OS page (struct page).
The location of the page on the swap backend is encoded in the MMU page (pte_t)
during this reverse walk.

Third, if an OS page is dirty, shrink_page_list () will perform TLB flush and
writeback of the page on the backend (pageout()). During writeback, the LRU sub-
system sets the page flag to PageReclaim and invoke the IO subsystem to writeback
(PageWriteback) the page.

Fourth, if the page is clean (PG_dirty bit cleared) and if it already exists on the
backend, then the page is discarded (try_to_release _page()).

Fifth, Pages which have been marked as lazy free by a madvise system call with
flags MADV_FREE are flagged PG_Anon && !'PG_swapbacked and can be dropped
immediately.

If the page has filesystem metadata, kernel tries to clear the metadata and to
free the page.

2.5.1.4 LRU lists

Real implementation of LRU algorithm uses multiple LRU lists. First, there
exists LRU lists for active and inactive pages as seen previously. Second, file-backed
pages are appended to file-backed lists and anonymous pages to anonymous lists.
Third, memory cgroup, which enables control of physical memory used by a set of
processes, requires per-cgroup LRU lists. Fourth, LRU lists are per NUMA node.
The cartesian product of active and inactive pages with file-backed and anonymous
lists is called a lruvec struct Iruvec. A Iruvec describes the entire logic of the
LRU algorithms the remaining lists are used for isolation purposes and NUMA
performances.

2.5.1.5 Reclamation start and stop: Watermarks

As seen previously, reclamation may be initiated as a background task instead
of waiting for critical page usage to occur. One of the challenge is when to wake up
background reclamation task. Linux relies on customizable watermarks in calls to
alloc_page() to determine when background thread is woken up and which action
to perform.

Each kernel zone contains NR_-WMARK watermarks. Currently, there are four
watermarks defined: WMARK_MIN, WMARK_LOW, WMARK_HIGH, WMARK_
PROMO.
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if zone-—>free_pages < low_wmark_pages(zone):
wake up kswapd

if zone->free_pages > high wmark pages(zone):
put kswapd to sleep

if zone—>free_pages < min wmark pages(zone):
use direct reclaim

2.5.1.6 The contiguous block of memory problem

A known issue of current LRU algorithm is that it favours grouping pages by
age rather than by locality [17]. It is known to cause page fragmentation and to
complicate the creation of contiguous group of pages which would be useful for
buddy allocator, contiguous memory allocator or creation of huge pages to reduce
TLB misses.

2.5.2 Swap cache

Linux leverages a writeback cache named swap cache placed before the swap
backend IO path and which contains pages. Swap cache (struct address_space swapper_
space) is a radix-tree like cache indexed by swp_entry _t.

The swap cache is used for pages of a shared anonymous mapping. Multiple
page tables have a mapping to an identical physical address which may be evicted
in swap-out path with an update in the page table of each process to point to an
offset on the swap device (swp_entry_t). To do so, reclamation thread uses reverse
mapping to update other processes sharing the mapping.

When one process requires the page back in memory, it either needs to fetch its
own version of the page, which would break the shared assumption, or to lookup
if other processes have already swapped in the page. Checking whether a page has
already been swapped in would require expensive synchronization between processes
as well as expensive page table walks. So instead, the process looks up the swap
cache first to determine if the page exists and then tries to fetch it.

Thus, Linux adds shared pages (struct page) when the first process that requires
the page swap it in. The page is then tagged with PG_SwapCache flag. The page
may be removed if the kernel needs to swap-out the page during memory reclamation
or if all processes which have a reference on the page have swapped in the page.

2.5.3 Sector allocation and release

Swap mechanisms must also perform reservation of sector on the swap device.
Linux divides swap sector space into clusters of 256 pages.

From a high-level perspective, swap supports sector allocation, sector reuse and
sector discard.

Sector allocation rely on a next-fit allocator with per-cpu allocation caches. Swap
system maintains indices for next free cluster in swap space and next free index in
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the cluster. A per-page bitmap (swap_map) is used to track usage of sectors and
help perform sector discarding.

Sector discarding is also used to reduce wear-leveling on SSD. It is implemented
linked list to aggregate discarded clusters until a discard job enqueued in a work
queue is scheduled for actual sending of the discard command.

2.5.4 Reading swapped entries

Page table entries propose a present bit (_ PAGE_PRESENT) to let the MMU
know whether the page can be directly accessed or not. If the page is not marked
present, a page fault is generated leading to a swapin operation in the page fault
context swapin_readahead(). The operation reads the desired page as well as neigh-
bouring pages. It is motivated by the observation that contiguous pages are usually
accessed together.

2.5.5 Page IO

Page 10 mostly rely on the use of two OS page flags which are PG_writeback,
PG _locked.

The flag PG_writeback indicates that a page is currently under writeback. Linux
provides high level API around end_page_writeback() and wait_on_page_writeback()
to make processes wait until termination of page writeback.

Linux relies on PG_locked bit to prevent accesses to the page. It is used as way
to block concurrent operations on the page. Thus, prior to reading a swap page with
swap_readpage(), the page is protected by invocation of __SetPagelLocked(). Linux
also provides a mutual exclusion abstraction with lock_page() and unlock_page().
This abstraction uses a wait queue to enqueue tasks waiting for the page 10 to
complete.

In this section, we have proposed a detailed description of memory management
in Linux kernel. Changes to kernel memory management remain frequent however
the ideas presented here propose a more advanced understanding of design choices
i Linux and the services offered by a modern operating system.
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After reviewing in the previous section the principles of general memory manage-
ment in the Linux kernel, we propose in this section to review the different proposals
to handle memory heterogeneity with page placement techniques on multiple tiers. In
particular, we begin by discussing available solutions used to report heterogeneity of
memory to the operating system. Then, we review memory management mechanisms
available to let the end user allocate pages on explicit memory tiers. Finally, we re-
view existing techniques for automatic page placement at kernel level and user-space
level.

3.1 Hardware heterogeneity reporting

In systems using different types of memory, the kernel requires finding where
each memory device registers in the physical address space and what are the proper-
ties or performances of each device. Since, there is no standard regarding physical
address space layout, it is important to have a way to programmatically retrieve the
differences across these backends through a topology.

3.1.1 ACPI tables: Reporting memory heterogeneity

One of challenge of memory heterogeneity is to let hardware report cost of remote
Memory accesses.

3.1.1.1 e820

Historically, BIOS boot used €820 to report a memory map to the Operating
System or bootloader. The kernel issues a INT 0x15, EAX = 0xE820 command
to retrieve memory areas. In Linux kernel, this table is used to report physical
memory ranges available as System RAM for page management. It can mostly
detail the memory type associated with the physical memory range (RAM usable
for OS, persistent memory, disabled memory) [2].
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3.1.1.2 SRAT

Since the advent of UEFI firmware (or EFI), a new set of tables has been intro-
duced to report memory map information. ACPI uses System Resource Affinity Ta-
ble (SRAT) to report processors, memory ranges, accelerators, DMA controllers. . . In
ACPI language, each block of processors and memory deemed close are assigned a
number called Prozimity Domain, which roughly corresponds to a NUMA node.

3.1.1.3 SLIT

ACPI uses another table to report heterogeneity of accesses across NUMA nodes.
ACPI defines System Locality Information Table (SLIT), a locality matriz represent-
ing a graph of NUMA memory node and supported inter-node memory accesses. On
this graph, edges weight stands for a normalized memory access latency. However,
SLIT reported latency are known to be inaccurate even though reported values are
more and more accurate. Moreover, SLIT fails to express performance differences
in terms of both latency and bandwidth as it reports a single distance value.

3.1.1.4 HMAT

Since ACPIv6.2, ACPI introduces Heterogeneous Memory Attribute Table (HMAT)
[175] to describe memory bandwidth and latency from the point of view of any mem-
ory request initiator. It reports three information: Memory Proximity Domains,
System Locality with Latency and Bandwidth information, Memory Side Cache
information. First, HMAT introduces two sub-classes for memory and processors
to SRAT Proximity Domains. Thus, Memory Proximity Domains describe a set of
memory resources while Processor Proximity Domain may represent either processor
resources or processor and memory resources. Second, HMAT proposes a detailed
description of locality with the introduction of a new locality matrix standardized
as System Locality with latency and bandwidth information. This matrix provides
information regarding bandwidth (MB/s) and latency (ps) for read and write op-
erations as well as information regarding hit or miss cost in cache layers. Third,
Memory Side Cache Information is used to describe caches of platforms supporting
caching on the memory side but it does not describe CPU caches (L1, L2, L3). On
these platforms, HMAT reports for each memory domain the number of cache levels,
their associativity and write policy (writeback, writethrough).

3.1.2 New EFI memory types

The recent arrival of new heterogeneous hardware has led to the adoption of new
memory types in the EFI standard. In particular, we present EFI specific purpose
memory and a device table to report coherency.

3.1.2.1 EFI specific purpose memory

Since EFI 2.8 [148], a new type of memory named specific purpose can be reg-
istered. This memory is reported distinctively to ban its usage from classic System
Ram usage. One of the use case is to target HBM. Linux registers EFI specific
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purpose memory as soft-reserved memory which probes a DAX device driver (see
§3.2.2)). Linux creates dev-dax instances (presented in §3.2.2)) for this type of devices
which lets the end user the ability to add this memory to the System RAM pool if
desired.

3.1.2.2 CDAT

Coherent Device Attribute Table (CDAT) [33] provides coherency information
about the devices. CXL devices are expected to report performance metrics using
CDAT.

In this section we have reviewed multiple existing and upcoming topology reporting
mechanisms. Reported information enable to differentiate the different backends in
the physical address space. However, reported information remain mostly inaccurate
and there exists multiple different tables to report similar information. Moreover,
the set of properties covered by these tables is limited compared to properties reviewed
in previous chapter. Indeed, all tables mostly focus on persistence and average band-
width and latency with no distinction between read and write operations.

Topology reporting remains important for kernel memory management but it
seems to be mostly used to draw the border between backends. In next sections,
we review the different choices available for memory management on heterogeneous
memory.
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3.2 Explicit Heterogeneity Management

The design space of memory management of heterogeneous memory is mostly
composed of explicit management and automatic management. Since the perfor-
mance 1mpact of page placement on memory tier depends on varitous factors which
are application specific, an ideal solution to support optimal placement for all type of
application is to defer choices of object placement directly to the application. In the
following section, we review this technique known as explicit memory management.

3.2.1 System-RAM

System RAM is the set of physical memory resources managed by the kernel.
System RAM memory is used by the kernel for its caches and objects as well as
for user processes mappings (anonymous or file-backed). Blacklisted ram through
specific boot time arguments is not part of system RAM.

3.2.2 DAX, a new mapping type for page cache bypass

DAX is a Linux kernel mechanisms which offers a process real memory semantics
by letting it perform direct memory accesses without using main memory.

Initially, DAX has been designed to support NVDIMMs with the support of
two important properties which are page-cache bypass and direct memory accesses.
On the one hand, some user-space applications, in particular applications support-
ing transactions on persistent memory like databases wants to use the persistence
guarantees offered by NVDIMM. These applications need to bypass any volatile
software cache (e.g. kernel page cache) when they perform memory accesses to
benefit from persistence guarantees. Thus, DAX ensures that processes performing
memory accesses on NVDIMM bypass the page cache. O, the other hand, Linux
filesystem syscall interface also supports I/O operations with page cache bypass with
O_DIRECT. However, the O_DIRECT interface is designed to work with read and
write system calls to perform file I/Os not for file-backed mappings. Thus, DAX
supports direct memory accesses circumventing volatile caches with virtual memory
semantics for the program. This is important with NVDIMMSs as they work at CPU
cache granularity rather than page granularity.

After its success for NVDIMMs, DAX has also become an indispensable mecha-
nism for other new memory backends.

For instance, in processors equipped with HBM, the memory capacity is limited
because of the cost per capacity. It is important that performance-critical appli-
cations which wants to draw the best from high bandwidth property can use most
of HBM memory capacity. Thus, DAX offers a way to prevent the kernel from
automatically using HBM and to save the resources for high-performance applica-
tions. HBM also benefit from DAX page-cache bypass and direct memory accesses
properties to fully leverage the performance of HBM.

DAX is also useful in the context of remote memory accesses with CXL. Indeed,
DAX can be used in this context to expose the heterogeneity of backends and to
let applications perform explicit placement of objects in the virtual address space.
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Thus, DAX can be considered as a mechanism to bypass in-kernel automatic page
placement decisions.

3.2.3 NUMA page allocation policies

The physical address space is usually aware of the NUMA memory topology by
having separate sections for each NUMA nodes. However, by default, virtual address
space in NUMA machines maintains transparency for applications and expose a
uniform view of memory. An application requires the use of an explicit system call
on a virtual address space range to configure a NUMA policy for page allocation
during page fault handling.

Linux offers MPOL_LOCAL to perform first-touch allocation or local allocation
by issuing the page allocation on the same NUMA node as the CPU issuing the
request. MPOL_INTERLEAVE to perform round-robin allocation on a set of nodes.
MPOL_BIND for strict allocation pattern on a set of nodes with no allocations
outside provided set of nodes. MPOL_PREFERRED to privilege allocations on a
single node. MPOL_PREFERRED_MANY to prefer page allocations on a set of
nodes and ultimately issuing allocations on the other nodes. This last operation is
designed in particular for memory tiering with the possibility to explicitly declare
that a page should be allocated either on fast or slow memory tier. The default
policy MPOL_DEFAULT is set to be MPOL_LOCAL.

The decision of allocating a page on a local NUMA node or a remote node gets
inspired by the page reclamation watermark policy described in chapter[2l That is to
say, by default Linux performs local page allocation while zone free pages is greater
than low_watermark. When, watermark is crossed background page reclamation
on the zone is initiated and page allocator look for free pages on remote NUMA
nodes. When the number of free pages in a zone is greater than high watermark,
reclamation can stop and page allocation can resume on local NUMA node.

3.3 Updating the LRU for multiple levels of het-
erogeneity

In systems using caching layers, the size of the cache is commonly smaller than
the size of the backend. Thus, the caching layer requires to update the set of loaded
entries and thus may need to determine which entries to evict to make room for
newer entries. Cache systems rely on Least-Recently-Used (LRU) algorithms which
tries to select a clever set of entries for eviction based on their access pattern. As seen
in section Linuzx implements a LRU algorithm to classify pages into two levels
of heterogeneity. Indeed, Linux historically required the LRU to implement swap
and page cache mechanisms which only considered fast memory (RAM) and slow
memory (HDD storage). However, the diversity of memory and storage backends
(see chapter now require the LRU to classify pages into more than two levels of
heterogeneity to server better page placement.

40 Yohan Pipereau



3.4. REMOTE CACHING

3.3.1 MGLRU

In section we have covered the details of the LRU algorithm in Linux kernel.
We have seen, how the current LRU relies on the use of the active and inactive
list to determine the set of active pages, inactive pages and evicted pages. Current
LRU algorithm has been built under the hypothesis that there were mostly two
memory tiers composed of volatile memory and slow storage. Thus, a new proposal,
MGLRU, has been made to upgrade the existing LRU algorithm to take into account
a broader set of performance among tiered devices.

Multi-generational LRU (MGLRU) [36] (merged in Linux 6.1) proposes to use
multiple LRU lists instead of the current two lists. MGLRU maintains lists by age,
ranging from the list of older pages to the list of younger pages.

Similarly to legacy LRU, page promotion is based on moving referenced pages
into younger lists after each scan. Pages are demoted (evict_folios ()) after two
consecutive scan observed a cleared access bit in the page (pte_t).

Since, swap and page cache mechanisms must be maintained for backward com-
patibility, MGLRU needs to propose a solution for page eviction. Thus, page recla-
mation (see section select pages to be evicted in older lists instead of picking
them at the tail of inactive list.

Instead of scanning all pages in physical memory, MGLRU walks through process
page tables. This design choice is motivated by the overhead in legacy LRU which
were caused by page lookup in the reverse map (rmap) to look for page table entries
(pte_t) referencing the page.

When compared with legacy LRU, MGLRU has shown [134] that it was able to
reduce the number of direct reclamation and that it was able to reduce working set
refaults (i.e. bringing back an evicted pages). However direct reclaim latency tends
to increase with MGLRU compared to legacy LRU.

MGLRU is a very interesting approach and should pave the way for lots of con-
tributions. Indeed, this new LRU algorithm moves away from the binary approach
of legacy LRU which mostly needed to consider whether enough memory remains on
the system before resorting to page reclamation mechanisms. Instead, the approach
paves the way for careful tuning of page placement on a variety of memory backends
by using a new abstraction named generation which groups a set of pages with similar
page accesses patterns together. Thus, MGLRU appears as a promising framework
to implement custom policies to allocate generations on memory backends and to
migrate pages between the backends using generation lists information.

3.4 Remote caching

Instead of relying on local memory to cache information, some early works made
the opposite choice of using remote memory for caching. The idea of these work is
based on the observation that remote memory accesses may be faster than disk 10
which means that remote memory could be used as a cache. Such prototypes proposed
since the 1990s account as one of the earliest usage of remote memory along with
distributed shared memory prototypes. Many techniques proposed in these works are
similar to current disaggregated memory prototypes, however, they remain mostly
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focused on caching files contents or compilation results.

3.4.1 Cooperative Caching

Thus, cooperative caching [41] proposed to rely on networking capacity to offload
file-backed pages to remote nodes. In the original idea of cooperative caching, the
idea was also to propose merging of individual local caches into a larger shared page
cache for all members of the cluster. They showed that cooperative caching could
reduce by 50% the number of disk accesses while improving page read.

More recently, PUMA [100] has proposed a cooperative caching solution for
IO intensive virtual machines to achieve higher consolidation ratio in datacenters.
PUMA exposes a block device to perform transparent RDMA accesses. PUMA
modifies Linux Page Cache to allow remote page invalidation required for distributed
file systems as this feature is not available in native Linux page cache.

Based on the observation that there is more than file content to cache, some
works [84, 40| propose to cache compiled code in remote memory. Since programs
rely on external code provided by libraries, there exists a decent part of code which
is common across applications. JITServer [84] and SHMVM [40] propose to reduce
JIT compilation overhead by sharing JIT results. It allows for code reuse across
datacenter by sharing results of compiled native Java code.

3.5 In-kernel automatic memory placement

As opposed to explicit placement of pages by applications, the kernel may pro-
pose a service to automatically infer where pages should be located on heterogeneous
memory. There are two main approaches to improve thread locality in NUMA ar-
chitectures in Linuz.

The first approach performs task placement, by migrating a task close to its
memory. However, task placement on tiered memory (i.e. NUMA nodes without
processors) is not relevant since tiered memory has no processors to execute code.
Thus, placement of execution unit and memory servers with tiered memory require
an alternative approach.

The second approach performs page placement by migrating pages close to pro-
cessor performing the access or on a quicker memory backend. This approach works
for servers with CPU NUMA nodes or CPU-less NUMA nodes (tiered memory). In
this section, we mainly focus on page placement but we also discuss task placement.

The main idea behind page placement is to track page accesses frequency to to
classify cold pages set (i.e. lower access frequency) from hot pages set (i.e. higher
access frequency). All techniques strive to place the hottest pages on the fastest
memory backend and the coldest pages on the slowest memory backend. Once page
classification is performed, page placement algorithms rely on page migration mech-
anism to move pages on the different backends. In this section, we first review page
magration mechanisms which have a limited set of differences between each others.
Then, we discuss the tracking and classification parts of existing prototypes with an
introduction to the classic page table walker and its limits before discussing tracking
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and classification on heterogeneous memory made of CPU NUMA nodes (common
NUMA) and CPU-less nodes (tiered memory).

3.5.1 Page Migration

Page migration is a key part of automatic page placement since it supports
moving a set of pages to another region in physical memory. Page migration is used
for various use cases such as handling memory failures, defragmentation of memory
during memory hot-unplug, compaction of pages in larger pages (e.g. compaction
of 4 kiB pages to 2 MiB pages), or moving misplaced page in NUMA machines.

Linux relies on a single-threaded page migration implemented in the kernel. The
method is named migrate_pages() E] Various memory management system calls such
as mbind(), move_pages(), or migrate_pages() rely on this migration method. The
migrate_pages() method supports moving a set of from pages to a set of newly al-
located to pages. The method blocks all accesses and mutation to the source and
destination pages. It unmaps all associated PTE (try_to_unmap()) and move the
page content. Since multiple services rely on page migration, the page migration in-
terface lets the caller devise whether migration should be a blocking or non-blocking
operation. In the context of automatic NUMA placement, page migration is per-
formed asynchronously (NUMA_ASYNC).

There exists alternatives to the serial page migration implementation used in
Linux kernel. For instance, Nimble [166] and Autotiering [85] rely on parallel page
exchange for Transparent Huge Pages. In this review, we will not dwell on the
alternative techniques in the literature for page migration. However, page migration
is a slow operation which requires expensive mechanism such as TLB shootdown.
It can be even slower when huge pages are used [70]. One of the main issue of
page migration is that these techniques cause stop-the-world phases for source and
destination pages during the copy.

3.5.2 Page Tracking

Page tracking is a desirable feature for various kernel services. Usually, it tries to
determine the set of accessed pages and the set of written pages. For example, it is
required to determine page accesses frequency for working set estimation or to issue
optimal placement decisions. Dirty page tracking may be used for checkpoint-restart
based algorithms or for VM migration to try to maintain a coherent state between
two replicas. A good page tracking solution needs to be accurate and to have a
minimal overhead on application execution.

3.5.2.1 The high-overhead of classic page tracking

The classic page tracking method used to separate a set of hot pages from
cold pages is to perform page table inspection and read Access and Dirty bit in page
table entries. When the MMU reads or writes a page table entry, it sets the Access

'Here, we refer to the kernel memory management method not to the system call of the same
name
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bit of this page table entry. For writes, it additionally sets the Dirty bit of the page
table entry (PTE). A page table scanner acts as a dedicated thread inspecting page
table entries for newly accessed or dirtied entry. It maintains a map of pages access
frequency before clearing the access and dirty bits.

However, this classical approach requires entire page table scans which is unaf-
fordable with ever-growing memory capacity.

Another problem is that classic page tracking requires a TLB flush after every
A/D bit clearing to make sure the MMU will set it again upon future access. This
TLB flush leads to remote TLB flush which is an expensive operation. Additionally,
this entire TLB invalidation hurts next memory accesses.

3.5.3 Automatic page placement on NUMA nodes with CPUs

AutoNUMA [14] 58] or Automatic NUMA balancing is a transparent memory
management mechanism which proposes an alternative page tracking solution. It
aims at improving page accesses locality in NUMA machines by performing task
migration and page migration to reduce remote memory accesses. On the one hand,
task migration tries to migrate threads closer to the pages they access. On the other
hand, page migration tries to migrate pages closer to threads that use these pages
by following memory policies.

3.5.3.1 NUMA hint fault

AutoNUMA needs to retrieve information about the frequency of page accesses
as well as which processor accesses each page. This information is retrieved using a
page fault instrumentation method named NUMA hint fault which is used for both
task migration and page migration use cases. The instrumentation method is split
into two parts, scanning and faulting.

Scanning could be implemented as a dedicated kernel thread scanning all page
tables in the system. However the use of a dedicated kernel thread would mislead
the scheduler to grant as much CPU time to the page migration thread as it would
give to user-space applications. Thus, this would hurt scheduler fairness. Instead,
scanning is implemented within the scheduler code and is executed in each process
context. This way the scheduler can ensure that page migration never exceeds a
certain limit of CPU time. When invoked by the scheduler, the scanning job clears
some bits in the page table entries of a region of process memory (the default region
size is 256 MiB). This will make any subsequent access to the page trigger a page
fault.

One of the challenge in the implementation of the NUMA hint fault is to find
available bits in page table entries to distinguish the NUMA hint page fault from
other page fault scenario in the page fault handler code. In particular, the NUMA
hint fault needs to be distinguished from three other similar scenario which are page
faults for a resident page table entry protected from read-write-execute, for a swap
page table entry and for an entry that is unmapped. In x86, Linux must encode the
NUMA hint fault by using multiple bits in the page table entry. There has been
multiple changes in the encoding of the NUMA hint fault, but since Linux v4.0, the
hint fault is encoded with the protection bit cleared in the page table entry.
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Faulting occurs when a processor accesses a page which as been hinted during
scan time. It causes a special page fault named NUMA hint fault (do_numa_page())
which is detected by checking if present bit is cleared in pte_t and global bit is set.
The CPU performing the access is recorded in an array of the structure backing the
process (struct task_struct) (in task_numa_fault()). A remote access is performed
when the processor accessing the page is not part of the same NUMA node as the

page.

3.5.3.2 Task migration

During the NUMA hint fault accounting phase (to determine if page accesses are
local or remote), AutoNUMA tries to perform task migration to move a task as close
as possible to NUMA memory. It determines a preferred NUMA node (task_numa_
placement()) for the process based on which NUMA node emitted most NUMA hint
fault. Then, it performs task migration (numa_migrate_preferred()).

3.5.3.3 Page migration

AutoNUMA is not just about task placement, it also performs page placement by
enforcing memory placement policies defined by the application during page fault.
This is commonly named migrate-on-fault as during a NUMA hint fault, AutoNUMA
determines if the faulting page NUMA node matches the per-segment (struct vma_
struct) NUMA policy (mpol-misplaced()). It takes into account the NUMA policy
and tries to determine a target NUMA node. If a target NUMA node that is different
from the requesting CPU is found, page migration is called (migrate misplaced_
page()). However, page migration may fail typically when destination NUMA node
does not have enough free pages.

3.5.4 Limits to Automatic page placement on CPU-ful NUMA
nodes

The solution offered by AutoNUMA in Linux remains unsatisfactory for many
reasons studied through different works in the literature. These works have identified
AutoNUMA to cause lots of cache pollution, to require lots of traffic to maintain
TLB coherency across cores. Finally, AutoNUMA assumes that NUMA nodes are
all comprised of processing units and does not consider the existence of memory-only
NUMA nodes.

3.5.4.1 Data cache pollution

One of the reason is that page table walk has been identified to cause lots of
data cache pollution (L1, L2, LLC) because it needs to access information of many
pages in a segment (struct page) to determine if the page may be migrated [15].
For instance, the page information is used to skip migration of some dirty pages and
from copy-on-write mappings.
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3.5.4.2 TLB shootdown

On top of data cache pollution, AutoNUMA page migration is also known to
cause lots of expensive TLB shootdown [89).

Hardware MMU leverage a small cache to remember page table address transla-
tion. This cache is called Translation Lookaside Buffer (TLB). There exist a TLB
cache for each processor but a single page table can be shared in main memory by
all processors. Thus, TLB caches may be in a incoherent state (see which
means that mapping information may not be identical for a same process in all
TLBs. Contrarily to data caches coherency which is maintained by the hardware,
TLB caches coherency is delegated to the operating system in a method known as
TLB shootdown [24]. TLB shootdowns are generated by a processor which issues an
interprocessor interrupt (IPI) for remote call to TLB shootdown interrupt handler.
The TLB shootdown interrupt handler then issues local TLB invalidation. On top
of that, TLB shootdowns are synchronous and block further progress until all cores
have completed the interrupt handling. TLB shootdowns are very expensive espe-
cially with a high number of cores and sockets. For example, LATR [89] measures
an order of magnitude which ranges from 6 us for 16 cores to 80us for 120 cores.

Concerning the cost of TLB shootdowns in AutoNUMA, there are two main
contributions. First, the background thread which changes protection of page table
entries (pte_t) issues TLB shootdown to make protection changes visible on all
cores. Second, during AutoNUMA page migration from one node to another, the
TLB mapping information in all caches needs to be updated to the new mapping
to prevent remote processors from accessing a stale version of the page. LATR [89)
shows that TLB shootdown represents from 5.8 % with one 4 KB page, to 21.1 %,
with 512 4 KB pages, of the overall page migration cost. The cost of TLB shootdown
in AutoNUMA shows that automatic page placement does not come for free and
may fail to improve performance if the shootdown overhead is not compensated by
page locality.

3.5.4.3 Challenges on CPU-less NUMA nodes

New byte-addressable memory backends such as CXL attached memory, HBM or
NVDIMMs can be managed as CPU-less NUMA nodes in the kernel. AutoNUMA
provides a solution to automatic page placement for NUMA nodes comprised of
both memory and CPUs, however these mechanisms have several design problems
for CPU-less NUMA nodes. First, task migration can not be performed on CPU-less
NUMA nodes since there are no cores to schedule the tasks on. Second, as reported
in TPP [104], CPU-less NUMA nodes will never be assigned pages because no access
will ever originate from this node. This prevents page demotion with AutoNUMA
algorithm.

We discuss solutions for tiered memory NUMA nodes in the following paragraphs.

3.5.5 Automatic page placement of CPU-less NUMA nodes

As described in §3.5.4.3] AutoNUMA algorithm does not support demotion of
pages to a CPU-less NUMA node. Automatic page placement on memory tiers need
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to address the design problem in AutoNUMA page demotion algorithm for CPU-less
NUMA nodes. Similarly to swapping or page cache mechanisms, automatic page
placement needs to automatically place hot pages in local memory and cold pages
on a tiered memory backend.

In swap and page cache page reclamation mechanisms, presented in section [2.4]
pages are offloaded to a storage backend and need to be copied locally to be accessed
or modified. On the contrary, in automatic page placement algorithms, processors
can access or modify remote page content without copying pages locally. Thus,
contrarily to page reclamation techniques, automatic page placement algorithms
leverage byte addressability of memory tiers to avoid page 10 and to deliver higher
performances.

There exists different alternatives to automatic page placement on memory tiers.
In this section, we focus on two different approaches to the problem of selecting hot
pages in automatic placement algorithms. The first approach proposed by Meta is
TPP [104] which leverages the existing LRU implementation of Linux for hot page
selection. The second approach proposed by Intel named memory tiering [78] has
been merged in the kernel and proposes a new algorithm for hot page selection.

3.5.5.1 LRU based memory tiering

TPP [104] proposes to rely on the LRU infrastructure for page demotion and to
add cold LRU pages to a demotion list.

TPP motivates their contribution by identifying a bad performance pattern in
AutoNUMA leading to page migration ”ping-pong”. Indeed, in AutoNUMA upon
NUMA hint fault, a page is systematically promoted without further checks on its re-
cent activity causing cold pages to get promoted before being demoted back shortly
after. In order to solve this problem, TPP proposes to decouple allocation and
reclamation watermarks by introducing two new watermarks allocation _watermark
and demotion_watermark (allocation_watermark < demotion_watermark) on local
nodes with CPUs only. In their new setting, background page reclamation begins
when free pages is less than low_watermark. Page allocation is local when num-
ber of free pages grows back above allocation _watermark. Meanwhile, background
reclamation carries on until number of free pages reaches demotion watermark. The
extra headroom between allocation and demotion watermarks avoids pages coming
back and forth. TPP achieves 18 % application performance improvement against
default Linux policy and outperforms AutoNuma and AutoTiering by 10-17 % for
web and cache workload. Interestingly, the authors report that AutoNUMA can
even yield worse performance over default Linux policy.

3.5.5.2 MFU based memory tiering

Linux memory tiering identifies two drawbacks in the concurrent prototypes.

First, it identifies that TPP [104] approach based on the LRU to select hot pages
can be improved. Indeed, the LRU algorithm is designed to identify cold pages but
is not optimal to select hot pages [37].

Second, it identifies that the AutoNUMA approach which selects the most-
recently-used (MRU) pages for promotion is not ideal either. In AutoNUMA MRU,

47 Yohan Pipereau



3.5. IN-KERNEL AUTOMATIC MEMORY PLACEMENT

all accessed pages since the last scan period are recorded. But, AutoNUMA does not
consider how many accesses have been made since last scan. Yet, scanning delays
can be very long (up to 60s) leading pages rarely accessed to be observed accessed
and thus promoted.

Linux memory tiering [78] proposes an approach based on the estimation of page
accesses frequency as in most-frequently-used (MFU) policy. It uses the existing
mechanisms of AutoNUMA for scanning and faulting presented in §3.5.3] Linux
memory tiering implements the MFU policy by maintaining for each page a hint
fault latency which represents the elapsed time between scan time and fault time.
It is not strictly a MFU policy as it does not count how many accesses have been
performed on a page. Instead, under the assumption that scan phases are repeated
periodically, the hint fault latency captures access recency on each page. Accesses
recency can be considered as a good approximation of access counting as hot pages
are more likely to have shorter page fault latency.

There exists other methods in the literature to identify the set of accesses or dirt-
ied page tables. For instance, Hemem [122] has proposed to use processor hardware
sampling (Intel PEBS) for page tracking. However, a common issue with the other
prototypes is the large overhead introduced by the tracking method. On the contrary,
the methods which have been presented in this section introduce decent overheads and
rely on software implementations which makes them usable for virtualization [131)].

In-kernel automatic page placement adds a considerable advantage over explicit
memory management by offering a transparent solution for software developers.
However, the techniques achieve application-specific and limited performance gains.
In the next section, we briefly present the reasons for these limits and user-space
alternatives.
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3.6 In-user automatic memory placement

In previous section, we have reviewed automatic memory placement techniques
available at kernel level through instrumentation of page faults. However, with lan-
guage runtimes there exists other opportunities to retrieve access information on ob-
jects and migrate them transparently using compaction or garbage collection phases.
One of the advantage of in-user automatic object placement is to work directly at ob-
ject granularity instead of page size which is usually too large for placement. Thus, in
this section we detail this language granularity semantic gap before a short overview
of user-space automatic object placement.

3.6.1 Object granularity and the limits to page granularity

There exist a significant gap between kernel knowledge of memory accesses and
the knowledge of memory from language runtimes or applications. In general, lan-
guage runtime know a lot more information about memory than the kernel which
makes language runtime a more appropriate layer to implement some of the auto-
matic object placement strategy than the kernel.

Typically, programming languages directly handle objects of any size and usu-
ally significantly smaller than page sizes. This enables finer-grained IO and prevent
memory copy amplifications already identified in swap techniques by AIFM [125].
Panthera [154] further observed that relying exclusively on physical pages accesses
tracking may lose object access information because multiple objects can be colo-
cated on a same page. Programming languages also maintain object relations be-
tween each other under the form of a reachability graph where in-use objects can be
found from a limited set of root objects. All this information can be leveraged by
languages to propose smarter object placement compared to kernel placement.

In the next paragraphs we discuss the proposals for automatic object placement
in user-space.

3.6.2 Object placement in user-space

Object placement prototypes for heterogeneous memory There exists different
solutions for object placement on heterogeneous memory. Some of the solutions rely
on language runtime information and services to implement placement policies while
other solutions are more intrusive and require explicit source code modifications.

3.6.2.1 Language runtime object placement

Additionally to providing more knowledge, managed languages also offer addi-
tional memory services such as compaction and garbage collection which can be
extended to include placement decisions on heterogeneous backends [6, [154].

For instance, Shoaib et al. [6] is one of the first prototype to propose object
migration based on their access. In their work, they propose to maintain in main
memory most frequently accessed objects and to move in a NVDIMM memory tier
objects less frequently written to.
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Panthera [154] proposes automatic object placement for big data framework
workloads (e.g. Spark) in a server using DRAM and NVDIMMSs. Their work relies
on the observation that the access pattern and lifetime of objects can be observed
easily in big data frameworks. They contribute two mechanisms: First they propose
a static analysis tool for inference of data access pattern on Spark persisted data-
structures (persisted RDD) to determine if objects should be allocated or moved
to DRAM or NVDIMMs. Second, they propose to extend the Parallel Scavenge
garbage collector in openJDK to implement promotion and demotion of objects
from DRAM to NVDIMMSs based on access pattern inference.

3.6.2.2 Explicit object placement

Based on the observation that page granularity leads to heavy IO amplification,
ATFM [125] introduces new user-space abstractions to perform remote memory ac-
cesses. They propose unique remotable pointers as an abstraction for single pointer
references to the object, and shared remotable pointers for when multiple references
to an object are held. It is interesting to review AIFM because their approach to
remote memory accesses in user-space is inspired by Linux swapping but enables
better performances.

The remotable pointer abstraction requires source code modifications but it
claims to require limited changes to application logics to support remote memory
accesses. Indeed, the abstraction is based on the semantic of C++ pointers which
are widely used in multiple applications. Additionally, the usability of their abstrac-
tion has been demonstrated by another research paper [174] which has implemented
fault-tolerance for remote memory based on AIFM remotable pointers.

Remote pointers manage the state of each object by encoding metadata infor-
mation directly in virtual addresses (on unused bits 47 to 63). It reproduces many
of the information found in a x86 page (pte_t) with a dirty byte E] to track object
mutations, a present bit to track the presence of the object in local memory and a
hot byte updated using GC-like barriers [76]. The hot byte is similar to the access
bit in x86 pages. Additionally to similarity with hardware page bits, remotable
pointers also provide information found in kernel pages (struct page). In details,
remotable pointers encode a shared bit to indicate that the reference counter of the
pointer is higher than 1 and an evacuating bit to signal that the object is currently
being evicted.

Upon memory pressure, AIFM evicts a set of objects identified as less frequently
accessed. The set of cold objects is identified by running a replacement algorithm
which scans hot bits contained in remotable pointers similarly to Linux LRU. AIFM
implements a replacement algorithm based on CLOCK algorithm [35], which has
many similarities with Linux LRU, to identify the set of cold objects. AIFM imple-
ments object evacuation by using TCP sockets to send them on a remote memory
server.

One of the challenges in the use of AIFM remotable pointer is to find the proper
timing to issue the evacuation. Indeed, in AIFM a remotable object which needs
to be evicted may still be referenced by multiple other objects and there exists no

2Tt is not an error, it is a byte
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backward reference to track parent objects. In Linux swapping, this is easily solved
by clearing the present bit of the page (pte_t) when it is evicted so that any future
access causes a page fault generated by the MMU. However, AIFM does not modify
page table management and can not rely on this technique to handle accesses to
an evicted object. Instead, AIFM forces the use of a Dereference Scope for every
dereferencement of a remotable pointer. Dereference scopes are objects allocated on
the stack which call a destructor method when the stack frame is destroyed. The
idea is borrowed from C++ Resource Acquisition Is Initialization (RAII) used for
resource release and automatic unlocking of mutexes. In ATFM, RAII is used to
defer the eviction to the termination of the scope of a remotable object.

One of the remaining problem in AIFM is to offer pauseless eviction of objects.
Pauseless eviction is inspired by pauseless garbage collection [76]. Pauseless eviction
means supporting safe concurrent evictions of objects from the runtime evacuator
threads to object mutations performed by mutator threads. Similarly to concurrent
GC, AIFM uses a barrier based on object evacuation bit to synchronize mutators
and the evacuator. The barrier manages concurrency on the evacuation bit using
RCU synchronization [136] (think of it as a read-write semaphore). RCU is known
to cost little overhead for the RCU writer and to favour RCU readers.

The user-space memory management approach used in AIFM prevents 10 am-
plification and page fault overheads. This enables AIFM to deliver 61 times higher
performances than fastswap, a remote memory prototype integrated with Linux
swap system.

In this section, we have reviewed the different mechanisms available to report
heterogeneity for the operating systems. We have seen that topology reporting infor-
mation are focusing on a reduced set of properties with average latency and bandwidth
with no consideration for the differences between read and writes.

After reviewing topology exposition, we have reviewed the different solutions
offered by the kernel to manage heterogeneity. In particular, we have presented
MGLRU, the updated LRU algorithm in Linuz to handle multiple memory tiers.
We have also presented remote caching of memory on remote servers which pro-
poses to offload specific subset of memory (page cache or JIT compiled code) on a
remote server to minimize the performance cost. Then, we have discussed explicit
memory management to let applications directly manage a memory tier deprived of
kernel services. We have discussed how explicit memory management could hurt
application memory management transparency. Next, we have discussed existing
approaches to maintain legacy memory abstractions on a tiered-memory system.
We have presented some of the existing in-kernel prototypes which try to perform
automatic page placement on heterogeneous systems. Our review of these prototype
separates solutions for classical NUMA nodes comprised of CPUs from NUMA nodes
acting as tiered memory with no compute capability. Finally, we have discussed some
of the advantages of in-user memory placement since these prototypes directly pro-
vide significant performance gain by leveraging additional information unavailable
at kernel level.

This section has presented different meaningful contributions to memory manage-
ment on heterogeneous systems by leveraging some of the description from chapter(3.
In the next section, we present contributions to memory disaggregation not limited
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to memory management. In particular, we will focus on key design challenges of the

different memory disaggregation prototypes with a review of hardware-level, OS-level
and database solutions.
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Previous section has reviewed the literature on memory management for het-
erogeneous backend. In this section, we propose to review main architectures and
techniques used in the literature to implement disaggregation of memory resources.

Our review first begins by presenting how it is still possible to perform remote
memory accesses since cache-coherent interconnects are mot yet available on the
market. Thus, we present RDMA, a common networking fabric which has been pop-
ularized in datacenters for its speed and low CPU overhead. Second, we discuss the
limits to RDMA wusage in datacenters with scalability and performance considera-
tions. Third, we discuss how OS-level prototypes may leverage different mechanisms
to offer transparent remote memory accesses. Fourth, we review distributed shared
memory (DSM) prototypes which try to support remote memory sharing across mul-
tiple nodes, a useful service which is not always considered in memory disaggrega-
tion. Finally, we discuss some of the hardware solutions proposed to speed-up remote
memory accesses for applications.

4.1 RDMA: A fabric for memory disaggregation

Remote Direct Memory Access (RDMA) is a set of protocols which targets rack-
scale or datacenter scale networking communications. Most common RDMA pro-
tocols include Infiniband, iWarp, ROCEv2, Tofu. Infiniband and ROCEv2 remains
the most widely used and commercially available protocols.

All RDMA protocols are based on the idea of offering a networking primitive
which uses the remote node DMA controller instead of its CPU as in classical NIC.
RDMA initially targeted High Performance Computing workload. It has been made
easy to program thanks to middleware which have implemented high-level abstractions
on top of it (e.g. Message Passing Interface [105]).

RDMA performance gains over the widely used Ethernet Network Interface Con-
troller (NIC) are achieved by various factors. First, physical, link, networking and
transport layer are implemented in the hardware of the RNIC which enables faster
processing thanks for networking stack operations than CPU networking stack op-
erations. Second, RDMA exposes a userspace API for data-path operations which
prevents the expensive privilege level changes required to perform in-kernel network-
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ing. Third, RDMA greatly benefits of its one-sided communication mode where data
may be transferred between two nodes without notifying the remote CPU. This pre-
vents expensive interrupt handling to be performed during communications, although
it is sometimes inconvenient not to be notified of the reception of a message. Fourth,
RDMA offers an asynchronous programming model which enable good communica-
tion overlaps. Fifth, RDMA API enables easy zero-copy communications which is a
key advantage for large size messages but less useful for smaller size buffers.

4.1.1 High-speed hardware networking stack

Infiniband protocol is composed of multiple layers of encapsulation namely a
link layer, a network layer and a transport layer. The link layer implements a flow
control service. Infiniband transport layer offers different service modes with differ-
ent guarantees such as reliability which guarantees that messages are acknowledged
and connected mode which only supports one-to-one communications between the
two connected queue pairs (contrarily to Datagram for one-to-many communica-
tions). Available infiniband transports include Reliable Connected (RC), Unreliable
Connected (UC), Unreliable Datagram (UD), Reliable Datagram (RD).

4.1.2 User-space networking

One of the main benefits of RDMA networking stacks is to rely on userspace
libraries for most networking primitives. Part of the control path such as registra-
tion of memory region still requires going through the kernel, but message posting is
fully issued from userspace. This is an important performance gain given the over-
head associated with privilege level changes in the kernel emphasized by mitigations
patches for Spectre-like vulnerabilities [65].

4.1.3 Freeing Remote CPU cycles

Similarly to a DMA controller, RDMA network cards offer an operation mode
named one-sided, which does not involve target CPU usage for message reception.
This mode yields great benefits to memory mutualization as it does not use the
target’s CPUs which can be used to run other jobs. As a consequence, one-sided
operations do not generate an interrupt on the target CPU after a message has been
written in target RAM.

4.1.4 Asynchronous data-path API

RDMA offers an asynchronous interface to the developer. This means that the
developer can post new requests without waiting for the termination of the previous
one.

RDMA asynchrony relies on the queue pair (QP) abstraction for communication.
In a way, queue pairs try to offer a similar abstraction for communication as BSD
sockets by maintaining queues for communications, context for messages and main-
taining a notion of session between peers. Queue Pairs are made of a submission
queue (SQ) to post requests and a completion queue (CQ) for notification of the
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completion of the request. In kernel RDMA stack, completion queue entries may
be retrieved through polling-based notifications (CPU expensive) or interrupt-based
notifications (latency expensive).

4.1.5 Zero-copy 10

RDMA also provides the ability to use any buffer of data to forge the message
payload without copying it. This is an important difference with traditional kernel
TCP stacks where user-space buffers are copied in a DMA-able zone of the kernel
which is used to forge the payload of the message. Zero-copy communications save
a memory copy of the buffer but may require mutual exclusion between NIC and
CPUs for concurrent accesses to the buffer.

4.2 Limits to the adoption of RDMA in datacen-
ters

We have reviewed the key advantages of RDMA network cards for communica-
tions over more conventional protocols such as TCP and UDP built on IP networks.
Howewver, despite its advantages RDMA remains underused in datacenter commu-
nications. In this section, we discuss the existing limits to the adoption of RDMA.
First, we present scalability issues posed by RDMA networking for datacenter net-
working. Then, we discuss some of the practical limits in terms of security or usabil-
ity of RDMA. Finally, we discuss current communication limits which are expected
to disappear with new hardware interconnects.

4.2.1 Scalability issues

One of the reason RDMA is not widely used in datacenters is due to performance
degradation (bandwidth and latency) when the number of nodes used in the com-
munication grows. The scalability challenges of RDMA mostly appear when the
metadata managed by the RDMA card becomes heavily bigger than the internal
hardware caches of the card. Various works |145] have reported multiple scalability
issue in Infiniband NICs. We present scalability problems caused by the increasing
number of queue pairs and memory managed by the NIC.

4.2.1.1 Queue Pair scalability

One of the identified scalability issue is the increase of RDMA operation latency
with the number of queue pairs created in the NIC. Various works [145, 46| have
identified that RNICs performance does not scale with the number of queue pairs.
This is caused by additional metadata maintained for the management of queue
pairs which may become larger that RNIC cache size. This phenomenon is mostly
reported for RDMA Reliable Connected mode.

Lite [145] proposes Queue Pair Sharing at software level to offer better scaling
performance.
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4.2.1.2 Memory Tables scalability

One of the problem of RDMA NIC is that it operates on physical address space
(or 1O virtual address space) but applications manipulates virtual addresses. In or-
der to solve this problem, RNIC vendors have shipped a translation unit in RNICs
named Memory Translation Table (MTT). MTT is structured as a hashmap which
associates virtual addresses with 10 virtual addresses (iova). Similarly to the MTT,
RNICs rely on a Memory Protection Table (MPT) to enforce access control on
RDMA memory accesses. RDMA proposes a memory region abstraction, which im-
plement provided both lightweight access control service for memory accesses (MPT)
and address translation to push address space mappings to the RNIC (MTT).

Lite [145] observes that MTT and MPT may not fit in RNIC cache when the
number of mapping grows. Indeed, each RNIC cache miss causes a DMA read from
main memory to bring required MTT entries in the RNIC cache. RNIC cache miss
causes RDMA write latency to be degraded from an average of 2 ps for less than
100 memory regions to almost 4 ps for 100,000 memory regions.

Additionally to the number of memory regions, Lite [145] observes that the size
of memory regions also causes slowdown because of MTT cache trashing. They
observe that for memory regions above 4 MiB, throughput is lowered and can be
divided by two for memory regions above 64 MiB.

4.2.2 Other practical limits

There are other reasons for the low adoption of RDMA in the datacenter. For
instance, RDMA provide isolation between physically contiguous memory buffers by
using a hardware check on a 32-bit security key. This security solution is efficient
but provide weak isolation since an attacker can still try to guess security keys to
access memory of another host.

There exists other practical limits such as the fact that the API remains complex
and require the developer to implement multiple data-structures for communications
which are usually hidden in kernel drivers (e.g. ring buffers).

4.2.3 Unnecessary round-time-trip

DirectCXL [60] observes that RDMA READ operation requires at PCle level two
Memory Read (MRd) Transaction Layer Packets. One transaction is used to fetch
a message descriptor, the second message is used to read data. On the contrary,

interconnects offering memory mapped interface like CXL can perform a read in a
single DMA READ operation.

4.3 Mechanisms for OS-level transparent remote
memory accesses

In previous section, we have discussed how RDMA can be used for remote mem-
ory accesses and its limits which justify the needs for new rack-scale interconnects.
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Meanwhile, prototypes may rely on RDMA however they still need to offer transpar-
ent remote memory accesses (with no application modifications) at operating system
level. A simple, yet, widely used solution is to perform IO operations in page fault
handling during translation of virtual addresses. In this section, we present some of
the mechanisms available to implement remote memory accesses at OS-level with.
Then, we review the identified limits to these mechanisms.

4.3.1 Swap based accesses

Various works [57, 7, [61] rely on Linux kernel swap for remote memory access.
Indeed, swap offers a natural extension to the limited physical address space while
maintaining transparent virtual memory accesses. It is a convenient interface be-
cause, as presented in section it naturally relies on Linux LRU service which
distinguish hot pages from cold pages. Additionally to page hotness identification,
Linux swap also integrates the mechanism which forges the 10 request containing
the set of cold pages to be written on the swap backend. In the following paragraph,
we present block device and frontswap swap backends.

4.3.1.1 Block device

Block devices are the historical interface to swap system in Linux. Block device
are the logical abstraction used to represent the sector layer of block storage devices.
Thus, various remote memory works such as Infiniswap and Gao et al. [57, 61]
rely on this interface to implement remote memory accesses. In these works, a
memory server is running to perform a large buffer allocation. A kernel module
serves a memory client by implementing a block device interface. The block device
receives an 1O requests to read or write a 4 kiB page on the remote backend and
translates the IO requests to whatever communication mechanism is used. For
instance, Infiniswap [61], translates 1O requests to RDMA requests to propose a
production-ready solution for transparent accesses to rack memory.

Instead of proposing a production solution, Gao et al. [57] rather propose a
simulation prototype by injecting configurable latency and throughput in the block
device. Then, they observe the consequences of the performance degradation on
various applications to draw application performance profiles depending on how
much remote memory is used in the application.

4.3.1.2 Frontswap

Fastswap [7] uses another swap interface named frontswap. Frontswap is an
interface integrated in the swap path of page fault handling. A frontswap backend
acts as a cache for an underlying device backend. Contrarily to block devices,
the frontswap abstraction does not directly manage the available size of the swap
backend. Indeed, frontswap acts as a cache layer, thus it swap sector allocation is
performed on the underlying backend registered below frontswap in the kernel stack.
Thus, frontswap is not aware of a swap size. Moreover, frontswap offers a blocking
API for single page operations only. The frontswap API supports load, store, and
invalidate calls.
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4.3.2 Swap based performances

Gao et al. [57] proposes a block device backed by local DRAM and inject artificial
delays and evaluate application performance degradation. They show that for most
applications using 40% of local memory still provide acceptable performances. They
give order of magnitudes around 3 to 5 us latency and 40 Gbps bandwidth for
reasonable performance degradation.

4.3.3 userfaultd, page fault handling in user-space

Previous section has reviewed the swap interfaces available for transparent vir-
tual memory accesses. Another solution available is userfaultd, a kernel mechanism
which allows a userspace process to register for notifications of page fault handling.
Userfaultd offers a more generic approach than swap since it offers the resolution of
the entire page fault to the process. One of its advantage over Linux swap is the
possibility to manage the anonymous memory of a single process as a cache instead
of the anonymous memory of the entire system.

Fluidmem [29] relies on userfaultd a mechanism, which brings page fault man-
agement to the userspace. The userfaultd userspace callback mechanisms allows a
process to register a function to be called by the kernel during page fault handling.
The feature was initially designed to help implement virtual machine post-migration
logic by letting a userspace hypervisor (e.g. qemu) located on a destination node
fetch pages from the source node.

Fluidmem [29] achieves full memory disaggregation by modifying qemu VMM
to trap guest memory page faults transparently for the VM. It is able to save a few
CPU cycles in page fault handling by avoiding to go through the various cases of the
kernel swap system. However, the page fault handling logics in user-space remains
mostly similar to swap-based techniques and thus suffers similar limitations.

4.3.4 Limitations to swap based disaggregation

Multiple prototypes for disaggregated memory have been proposed over the last
years based on page fault instrumentation. Consequently, many papers have shed
lights on the biases introduced by this technique which is now considered a poor
candidate for remote memory accesses even for simulation purposes.

4.3.4.1 10O amplification

AIFM [125] shows that page size granularity cost is not observed in the trans-
mission time but in the IO amplification phenomenon where objects of smaller size
are collocated on the same page.

4.3.4.2 Analysis of swap cost in Page Fault

ATFM [125] also provides an in-depth analysis of the cost of swapping-in a page
from a SSD backend. They observe that despite an incompressible 6 ps hardware
read latency for 4 kiB pages, swapping in a page costs an average of 15 ps which
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means 11 ps of overhead introduced by the swap mechanism. AIFM proposes a time
analysis of the different time-contributions due to swapping in a page. They show
that performing the IO (6 ps) and spinning for completion costs up to 11.7s which
is the main contribution and shows that kernel 1O stack is already responsible for
5.7 ns of overhead. Furthermore, they show that trapping to kernel costs less than
1 ps while the allocation of the page table entry contributes to around 1 ps. Finally,
the creation of the mapping in the page table costs around 2s.

4.3.4.3 Anonymous memory only

Registration of a swap device can only serve to back anonymous memory pages
while cooperative caching techniques (see §3.4.1]) have shown that potential benefits
may be found in disaggregating the page cache as well.

4.3.4.4 No parallelism

One of the problem of swapping we have identified without finding alternative
sources is that in background reclamation context, pages eviction are performed se-
quentially unless multiple NUMA nodes are used. Only direct reclamation (memory
reclamation in the context of a page fault, see section offers parallel eviction
and parallel reads.

This is problematic when swapping becomes a common memory management
technique as it is used in disaggregated memory relying on it.

4.3.4.5 No sharing

Swapping relies on dedicated disk partitions, and it requires exclusive access
to the backend. This means that, in the case of memory disaggregation, a swap
backend can not serve as a solution for shared memory between multiple compute
nodes.

4.3.4.6 TLB shootdown
Linux kernel swap mechanism relies heavily on TLB shootdowns (see §3.5.4.2))

Indeed, after swapping out a page, a TLB shootdown is sent to all cores having
the mapping in their TLB to guarantee the visibility of the cleared present bit
and the updated pte_t which encapsulates sector location information on the swap
backend. ecoTLB [103] has measured up to 18% overhead due to TLB shootdown in
memcached using infiniswap [61]. This is a major design argument against swap-like
techniques compared to methods which rely on hardware caches.

4.3.4.7 The hidden hardware cost of page faults

As explained in Kona [28], there exists an intrinsic cost to handle page faults
which makes them irrelevant for latency-sensitive workload. Indeed, when a page
fault is delivered, the processor requires to flush its instruction pipeline. Then, the
page fault handler code performs various memory accesses and pollute CPU caches.
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Finally, Kona has identified page fault as implicit barriers for the CPU prefetcher
as no prefetching can be performed past the page fault.

This section has presented common mechanisms used to support transparent re-
mote memory accesses at operating system level. However, all the solutions reviewed
do not propose support sharing of remote memory between multiple nodes. The next
section presents some of the contribution to implement cache coherency protocols at
OS-level and application level to support remote memory sharing.
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4.4 Distributed Shared Memory

The previous section has presented various mechanisms which can be used to im-
plement OS-level transparent remote memory accesses by relying page fault instru-
mentation. This approach has also been extensively used in the 1990s to implement
in-kernel cache coherency protocols to support sharing of memory across multiple
servers.

Distributed Shared Memory is an architecture which leverages compute resources
from different node to issue transparent memory accessed on a uniform address
space. In DSM, the uniform address space spans on memory from multiple nodes.
Prototypes presented in the following section (section propose variations in the
design of cache coherency protocols.

In this section, we first review page-based DSMs which implement a distributed
shared virtual memory by modifying page fault handling mechanisms. Second, we
review the use of object-based DSM commonly used in databases to support distributed
transactions across a set of multiple nodes. Third, we discuss how RDMA can ac-
celerate DSM implementation before reviewing hardware acceleration for distributed
shared memory.

4.4.1 Page-based DSM

Before the arrival of NUMA processors, various software proposals have tried
to transparently scale the shared memory abstraction to multiple nodes. These
prototypes propose rely on modifications to page fault handling to support coherent
Memory accesses.

4.4.1.1 Shared virtual memory

Some DSM approaches [96, 30, [170] transparently expose a virtual memory to
maintain application transparency.

Ivy [96] first proposed an algorithm to implement a coherent shared virtual
memory by relying on page fault handling. They propose an algorithm to let an
OS process virtual memory span over each node physical memory. The use of pages
is based on the observation that sending messages larger than object size does not
significantly increases additional in transmission cost. It is important to note that
this assumption is already arguable for pure message exchanges, but, information
tracking and page thrashing has been shown to be expensive at page size in later
works (see §4.3.4).

GiantVM and aggregateVM [170, |30 leverages hypervisor page fault handling to
expose a shared virtual RAM resource for a virtual machine. They expose a shared
guest physical address space implementing Ivy’s algorithm in EPT fault handing in
KVM.

4.4.1.2 Page-based cache coherency

Ivy [96] discusses possible strategies to solve memory coherency problems with a
classification in two dimensions. First dimension describes two approaches to page
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synchronization: writeback and invalidate. In the writeback approach, when a
core performs a write on a page, it is propagated through a transaction to all cores
having a copy of the page to update it. In the invalidate approach, when a core
performs a write, it acquires page ownership and invalidates all the other copies.
Then, it performs the modification on the page block.

Second dimension describes different approaches for page ownership. It presents
static ownership where a processor owns a page permanently as opposed to dy-
namic ownership where page owner changes over time.

A possible dynamic page ownership strategy is to rely on a centralized monitor
where a single monitor is responsible for managing a table of pages with their asso-
ciated lock to serialize conflicting requests and owners of pages. However, this static
ownership approach is bottlenecked by communications towards a unique monitor.

Thus, another strategy is to implement dynamic page ownership with distributed
monitors. The idea is to distribute memory pages across monitors, each monitors
having the responsibility of tracking ownership for its set of pages. Naive distributed
approaches require more messages to locate the owner than in the centralized ap-
proach, however Li et al. noted potential gains possible by replicating copyset
foretelling directory-based cache coherency.

4.4.1.3 Limits to page-based DSMs

Software DSM often struggle against hardware implementation because few pro-
totypes propose alternative memory models to sequential consistency. For instance,
Ivy [96] and giantVM [170] offer sequential consistency while modern commod-
ity processors propose weaker memory models. There exists proposals (usually in
database systems) to integrate weaker models, such as GAM [27], which proposes
partial store order and shows that it can deliver a higher number of memory oper-
ations thanks to operation pipelining.

Yet another problem in the design space of page-based DSM can explain their
little usage in production. The first problem in page-based DSM shown by Kona
[28] is the use of page fault handler to implement cache coherency protocol. Indeed,
as described in§4.3.4.7] page fault handling is an expensive interface between hard-
ware and software, which breaks the flow of execution and prevent the use of many
hardware mechanisms (prefetching, instruction pipelining, cache hit).

The second problem shown by Kona [28] is that few memory accesses are per-
formed at page size, which has consequences in identifying dirtied memory for write-
back. They estimate that tracking dirtied pages instead of dirtied cache lines results
in 2 to 31 more data to be written back.

Based on the problems introduced by page granularity and page fault handling,
we propose to review in the next section other software DSM approaches based on
object granularity.

4.4.2 Object-based DSM

The concept of distributed shared memory has a long research history in the
database community. Indeed, in database architectures, there is a long ongoing
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discussion around distributed shared-nothing architectures and distributed shared-
storage or distributed shared-memory architectures. |[138] In the 1980s, distributed
shared nothing (DSN) has taken over DSM architectures but recent work |27, |157]
are making a case to reboot distributed shared memory architectures again based
on the advances in interconnect speeds. In next section, we review GAM database,
the state of the art distributed shared memory implementation, which offers object
granularity memory accesses. Then, we discuss the limits to current software DSM
systems which have led to the adoption of hardware acceleration.

4.4.2.1 GAM, an efficient DSM database using RDMA and caching

GAM [27] is an interesting DSM database prototype because it implements many
efficient mechanisms missing in page-based DSM prototypes.

First, GAM imitates the architecture of page-based DSM by relying on locally
managed software caches for a shared pool of memory. GAM manages memory at
the granularity of cache lines and implement a dedicated LRU cache line replacement
algorithm. The software cache layer enables shorter memory accesses.

Second, GAM relies on directory-based cache coherency protocol instead of
snooping cache coherency to support scalability to multiple nodes. GAM directory-
based cache coherency protocol uses a global coordinator, which communicates with
the other agents using RDMA.

Third, GAM offers a weak consistency memory model named partial store order
[64] to support write reordering and achieve a higher operation throughput.

There exists concurrent prototypes similar to GAM [46], although this section
mostly proposes a short overview of a larger set of contributions in databases since
2015. There have been multiple proposals to support distributed transactions using
RDMA to implement DSM at object granularity. The different contributions to
transaction processing proposed by these systems are out of the scope of this thesis.

4.4.2.2 Superlinear cost of cache coherency

Software object databases yield significant performance gains compare to their
page-based counterparts. However, databases typically require to store more and
more data which require to use resources from more and more nodes. Thus, a re-
maining question in object-based DSM databases concerns the performance impacts
to scale to larger pool of resources.

In Concordia [156], the authors try to evaluate how cache coherency scales with
the size of shared memory. They study the state-of-the-art DSM database named
GAM [27] (see §4.4.2.1). GAM is a fair choice for testing the scalability since it uses
multiple advanced technique known to offer best possible scalability such as RDMA
for fast-communications and directory-based cache coherency (see . De-
spite all GAM advantages, Concordia shows that application throughput degrades
superlinearly with the size of shared data. Concordia explains this superlinear
degradation by the number of cache coherency messages between nodes.

The limited adoption of software DSM systems is caused by various factors. Some
limits can be circumvented with more advanced software solutions by providing alter-

63 Yohan Pipereau



4.4. DISTRIBUTED SHARED MEMORY

native memory consistency models to sequential consistency. However, there exists
also fundamental limits software DSM. For instance, a transparent software DSM
causes undesirable amplification of IO messages due to granularity mismatch between
objects and pages. Moreover, software DSM implementations offer limited scalability
because they require additional round-trips which can be prevented at hardware level

(see details in section [4.5).
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4.5 Hardware accelerators for disaggregated mem-
ory

In the previous section, we have presented various prototypes which supports a
distributed shared memory abstraction. We have shown how DSM abstraction en-
abled multiple execution units with a caching layer access a shared pool of memory
coherently. However, all of these prototypes even when they use high-speed fabrics
such as RDMA suffer unaffordable performance degradation. It is possible to obtain
significant speed-ups by moving some of the requirement of DSM to the hardware.
A production example of the memory hardware offload is illustrated in NUMA ma-
chines which are now broadly used and which implement hardware cache coherency
protocols. In this section, we review how remote memory accesses may benefit from
offloading memory services to the hardware. We first look at DSM acceleration with
hardware cache coherency before reviewing hardware acceleration for non-coherent
remote MemMory accesses.

4.5.1 DSM acceleration using in-network cache coherency

Concordia [156] proposes to accelerate DSM using network switch. They pro-
pose FlowCC a Write-Invalidate protocol with in-switch acceleration which requires
a single round time trip for coherency. On a programmable network switch, Con-
cordia implements two primitives: multicast invalidation and Lock-Check Forward
(LCF) pipeline to enforce in-switch coherency. The switch stores an array indexed
by cache blocks containing a lock, a global status and the copyset (nodes holding
the block). First, Lock-Check-Forward pipeline serializes concurrent cache block op-
erations issued by cache agents using a 16-bit read write lock. Read lock is acquired
on a read miss and write lock is acquired on a write miss to a DSM entry. Second,
the pipeline filter out invalid requests which occur for concurrent requests to a same
cache block. Finally, the switch performs request forwarding to cache agents for
invalidation or to home agent for reading from global memory. Concordia achieves
performance speed-up over a software DSM from 2 (graph engine) to 4 (KV-store)
times.

4.5.2 non-coherent disaggregated memory using snooping
FPGA

Kona [2§] also reports unacceptable latencies of using transparent virtual mem-
ory techniques to perform remote memory accesses. Kona identifies page fault han-
dling and 10 amplification as key limitations to perform remote memory accesses in
the kernel. Thus, it proposes to implement a writeback cache with host memory for
a large pool of remote memory. They identify three different problems to implement
the writeback cache and propose solutions for them.

First, Kona requires a mechanism to fetch remote cache lines in the cache.
Kona uses a fake memory device built in the FPGA and attached to the physical
address space of the host. Kona does not issue page faults when it tries to read
remote memory, instead the FPGA receives a cache miss requests and directly reads
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remote memory. This approach to fetch remote memory avoids TLB shootdown
since MMU page table remains unchanged.

Second, Kona requires a mechanism to track dirty cache lines to determine
which cache lines need to be written back instead of writing back the full 4 kiB page.
Kona proposes to leverage the snooping FPGA to report dirtied cache lines instead
of using expensive write-protection of pages.

Third, they need a mechanism to evict local cache lines to remote memory.
Kona only needs to evict cache lines which are dirty. Dirty cache lines are aggregated
in a dirty log and evicted using asynchronous one-sided RDMA (from the FPGA).

All these optimization enable Kona to achieve 1.7 to 5 times shorter accesses
and to reduce dirty data amplification by 2 to 10 times compared to page-based
approach like infiniswap [61].

This section has provided a very short overview on how hardware may help speed-
up existing software approaches. The first approach provides cache-coherency imple-
mentation in a switch to speed-up software cache coherency in DSM systems. The
second approach relies on hardware to support remote memory accesses and dirty
memory tracking at fine-grained granularity to prevent misidentification of dirty data
and 10 amplification.
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In this section, we have reviewed architectures and techniques used to implement
disaggregated memory. We have started this discussion with a focus on how to
achieve remote memory accesses with RDMA, a fabric for remote memory access
which is gaining more and more adoption in datacenters. We have seen that RDMA
has served as an early solution for page-based disaggregated memory prototypes and
which is still relevant to implement object-based software distributed shared memory.
We have also seen ezisting limits in scalability with RDMA which is magjor challenge
for datacenters. Moreover, there exists design limits with RDMA such as the lack
of cache semantics (CPU load/store) and additional round-trips for read operations
which have been solved in new interconnects such as CXL.

Then, we have reviewed the interface used by most OS-level prototypes for dis-
aggregated memory to offer accesses to remote memory through instrumentation
of virtual addresses. We propose a review of software DSM prototypes which con-
sider disaggregated memory as supporting sharing of remote memory across multiple
servers. In particular, we have shown that page-based DSM offered limited perfor-
mances and were rarely used on the contrary of software object-based DSM which
are being used in databases.

Last we have seen how hardware can help to provide useful services for remote
accesses with hardware cache coherency to speed-up software DSM or dirty tracking
to generally reduce 10 amplification in systems leveraging a writeback cache for
remote accesses.

This section concludes our review of the heterogeneous memory landscape be-
fore the beginning of the last section which present the advances in VMs usage in
datacenter to reduce resource consumption.
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In the previous sections, we have reviewed memory management challenges in
heterogeneous systems and presented the different solutions proposed. The study of
virtual machines components and their use in datacenters has been left as a separate
section since it introduces an additional level of complexity with system-level memory
management considerations and rack-scale memory management challenges.

Initially, system virtual machines were proposed in the seventies [118] (e.g. cp-
cms or IBM system370) to permit a single host to recreate a hardware execution
environment with its 10, memory and compute resources. In the late 1990s, the
emergence of NUMA architectures has restarted the interest in virtual machines.
Indeed, operating systems did not scale well on multiple processors, Disco [20] pro-
posed to run independent OSes on each NUMA nodes A few years later, Xen [19]
proposed a VMM to run a hundred VM on a single server with no hardware virtual-
1zation support at the time. The next years have seen the emergence of datacenters
with virtual machines becoming a standard abstraction for deployments. Datacen-
ters have been able to increase resource mutualization while keeping strong resource
1solation. Quer the years, virtual machines have also received the help of processor
hardware accelerators which are efficient enough to become a large scale deployment
unit in datacenters. Newer and lighter abstractions like containers have emerged
since then with cloud providers massively shifting to selling a large set of services
instead of machines. Yet, virtual machines remain interesting when strong isolation
15 required or when migration of software stacks is desirable.

In this section, we first propose to review how virtual machines offer an execution
and isolation unit for the datacenter with a short introduction to the implementation
of modern virtual machines. Second, we discuss how heterogeneous memory can be
transparently used in virtual machines. Third, we discuss challenges and solutions
to achieve collaborations of quest and hypervisor memory management. Fourth, we
present a short model to understand orchestration of resources at datacenter level
with problems related to resource usage. We use these models for our discussions in
the following sections. Fifth, we discuss the need for dynamic resource usage in VMs
and solutions currently used. Sixth, we present transient virtual machines, a class
of VMs which tries to improve resource usage by using resource leftovers. Finally,
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we discuss orchestration and design of VMs using remote memory in the rack.

5.1 Virtual Machines: execution and isolation unit

Datacenters rely on the possibility to share hardware resources between multiple
customers to propose affordable execution environments to customers. VMs propose
a nice abstraction for cloud provider with interfaces for migration between hypervi-
sors, checkpointing or resource allocation.

First, we review core services offered by VMs which explain their adoption in
datacenter as isolation and deployment units. Second, we review how virtualization
offers isolation of the execution of instruction blocks. Third, we present memory
management mechanisms in VMs using software and hardware solutions. Fourth,
we present how VMs expose 10 devices and the challenges to manage them.

5.1.1 Core services offered by VMs

In the following paragraphs we review some use cases covered by VMs. In par-
ticular, we discuss possibilities offered for security isolation, for deployment and
hardware emulation.

5.1.1.1 Security isolation through VMs

Operating systems rely on process as the main execution unit of user-defined
tasks. Processes enable users isolation on the same machine or to separate tasks of
an identical user with different security level.

Processes by design provide basic security guarantees with independent virtual
memory address spaces to minimize the attack surface offered by memory sharing
and avoid malicious processes from hijacking other processes.

However, processes remain vulnerable to denial of service from other malicious
processes which may want to overuse computation time or memory capacities.

5.1.1.2 VM as deployment units

Available hardware capacities in server is growing at a quick pace. Software
stacks are also less monolithic and managing compatibility of multiple version is
sometimes hard. The industry has widely adopted the principle of shipping entire
software stacks in packed deployment units. Although, this packed deployment units
heavily rely on containers, it sometimes also necessary to ship specific operating sys-
tems with the deployment. Thus, some approaches use lightweight virtual machines
for this task [149, 3] with the additional benefit of shipping the appropriate kernel
with the deployment unit. For example, in computer networking, internet service
provider are building emerging infrastructure services by hosting network services
(firewall, packet inspection, ... ) in virtual machines. It is known as Virtual Network
Function (VNF).
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5.1.1.3 Emulation of hardware interfaces

Virtual machines aim at providing similar execution environment as in a bare-
metal setting. Virtual machines emulate hardware interfaces to support the execu-
tion of any unmodified operating system.

The software permitting the execution of a virtual machine is commonly named
virtual machine monitor (VMM). Some widely used modern VMM are gqemu [121]
or firecracker [3].

Hypervisors rely on hardware accelerator components to tackle some bottlenecks
of hardware virtualization. Every operating system has built software abstractions
on top of this hardware accelerators as a middleware for multiple processor vir-
tualization solutions. In Linux, the accelerator is named Kernel Virtual Machine
(KVM). It is exposed as a character device /dev/kvm and configurable through
ioctl with a large set of opcodes.

5.1.2 Executions of instructions

As seen previously, virtual machines propose emulation of hardware capacity
of a server. Thus, it must emulate processor features to permit execution of an
instruction stream since it can not rely on source code. One of the solution used in
VMM is to translate instructions in a source instruction set architecture (ISA) to a
destination ISA. Such techniques are known as binary translation.

5.1.2.1 Interpreter and fetch-decode-execute loop

The immediate implementation of binary translation can be provided by em-
ulating how CPU instructions execute the associated logic. This can be achieved
by looping over the instruction stream using program counter register as an itera-
tor decode each instruction to invoke the associated logic. This approach imitates
the fetch-decode-execute loop that the processor uses for interpretation. However,
considering a set of instructions altogether let room for further optimizations by
understanding the group of instruction logic.

5.1.2.2 Binary Translation for cross architecture support

Virtual machines typically executes instruction stream rather than instruction
files which imposes constraints on how binary translation may occur. VMM uses
dynamic binary translation where instruction stream is divided in basic blocks which
connects with other basic blocks and form a graph known as control flow graph.
Basic block typically begins with non-contiguous jumps in the instruction stream
most commonly used in conditions and function invocations.

One of the first identified bottleneck in virtual machines was the use of code
generator like gemu TCG Just-in-time compiler which is used to perform virtual
machine instruction compilation into host instruction set through an intermediate
representation. This technique suffers large performance penalty particularly em-
phasized by code expansion when source ISA does not fit into destination ISA.

However, a common pattern is to run guest using the same instruction set as the
host machine which led to the introduction of hardware accelerator for virtualization.
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5.1.2.3 Introducing the new mode

CPU vendors proposed to allow guest to directly feed instruction to the CPU
hardware interpreter to speed up translations. It required a way to maintain virtual
machine strong isolation, thus CPU vendors have proposed the introduction of a new
CPU mode to let processor know that a virtual machine is currently running on the
processor. This CPU mode is named non-root mode as opposed to the pre-existing
root mode.

In x86 architecture, there are two main extensions available: AMD-V and In-
tel VT-X. These extensions have been extended over releases to solve performance
problems of virtual machines.

5.1.2.4 Mode transitions

The introduction of this new mode permits execution of guest code on host
processor. However, a subset of the available instruction set is forbidden in non-
root mode for security reasons. Transitions between root mode and non-root mode
on modern hardware is around 200 CPU cycles |20] on modern hardware.

5.1.2.5 A mind model of processor modes

This new mode creates a two-dimensional execution model. First dimension
may represent transitions between supervisor mode (CPL 0) and user mode (CPL
3). Second dimension may represent transitions between root mode and non-root
mode.

5.1.3 VM memory management

VM memory management must hide to the VM the fact that physical memory
is actually virtualized.

5.1.3.1 Shadow Page Table

Before hardware support existed for VM page table management, a software
technique named shadow page table was used. Shadow page tables are a hypervisor
construct which enable translation of guest physical addresses (gpa) to host physical
addresses (hpa). Shadow page table management relies on the hypervisor intercept-
ing some guest events such as page invalidation, attempt to load a new page table
(write to CR3) and page table mapping changes. It write-protects guest page
tables so that any attempt to change the page table causes the hypervisor to be
called to perform the modification on hypervisor page table which maps host virtual
addresses to host physical addresses.

Once mappings are installed in the host, execution has almost native perfor-
mance. However, on changes to page table this technique leads to lots of VMEXIT
and causes TLB flushes on every exit.
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5.1.3.2 Intel EPT

First releases of virtualization hardware extensions came without support for
second level virtualization. Extended Page Table (EPT) |72] introduces an addi-
tional layer of page table management named FEPT paging structure or hypervisor
page tables. EPT can maintain transparency in guest memory management by let-
ting a guest manage its own guest paging structure or guest page table. This layer
implements translation of guest physical addresses (gpa) to host physical addresses
(hpa) to present a x86 MMU to the guest. On Intel processors first bit of secondary
VM control structure (VMCS) is used to control the use or not of Extended Page
Table.

Mapping of addresses from guest virtual addresses to guest physical address relies
on classical address translation described in memory management section. Here, we
will focus on translation of guest physical addresses (virtual RAM) to host physical
addresses (real RAM).

When accessing a guest physical address (gpa) unmapped in the EPT, an EPT
violation fault is raised. EPT violation generates a VMEXIT and traps into hy-
pervisor code to fix the fault until the execution is resumed by invocation of a
VMENTRY. The extended page table directory address is stored in the host in the
EPT pointer loaded in the VMCS and the CR3 register of the guest contains the
physical address to the guest page table.

Extended Page Table rely on a page table translation with four levels (or op-
tionally five). EPT page table entry uses a different layout than page table entry
though some information similar information can be found like permissions (read-
/write/execute), access and dirty bits.

The use of EPT enables performance gains over software shadow page table tech-
nique. EPT reduces the number of VMEXIT EPT also provides caching of gpa to
hpa translation in a Translation Lookaside Buffer (TLB) which enable considerable
speedups in virtual MMU translations.

5.1.4 VM I0 management

There are three main classes of 10 device support for virtual machines. First,
VMM may provide device emulation where the VMM expose to the guest OS a
legacy 1/O device and perform I/O operations translation in VMM software to
issue I/O on real hardware. This emulation technique offers limited performances.
Second, VMM and VM may share a similar abstraction of 10 devices for optimal
communications. This technique is known as paravirtualization Finally, direct and
exclusive assignment of hardware devices to virtual machines is possible and known
as device assignment which we review in next paragraphs.

5.1.4.1 Device assignment

IO device attachment is a technique were physical 10 devices are handed to
virtual machines. However, it requires hardware support [1] to maintain isolation
between virtual machines. Indeed, virtual machines may forge erroneous source
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or destination addresses and read or write a physical address outside its isolation
domain.

Hardware accelerator for IO operations thus propose a new hardware component
known as IOMMU which provides a DMA remapping agent for VM isolation as well
as interrupt remapping to accelerate interrupt delivery to virtual machines.

Single Root 1/0 Virtualization [135] has been introduced has an extension to de-

vice assignment by allowing multiple virtual machines to share an identical physical
IO device.

5.1.4.2 Implications of device assignment for memory management

Device assignment imposes limitations on memory management. Hardware de-
vices will perform DMA operations on host physical addresses corresponding to a
virtual machine buffer. However, because of VM isolation neither the hypervisor nor
the device is aware wether the buffer provided to store the result of the operation
on the reception path is mapped.

There exist different approaches to deal with this problem.

A first widely used approach uses static pinning [162], a technique which explic-
itly pin the entire VM memory. If the entire memory is pinned, all DMA transactions
are guaranteed to hit a mapped page. However, static pinning causes longer VM
creation time.

For some time, VMs relied on paravirtualization to inform the hypervisor of
DMA mapping. This remains unpractical when for unmodified virtual machines.

Another approach named virtual IOMMU (vIOMMU) 9] is an IOMMU emula-
tion. This enables fine-grained pining and unpining of host pages corresponding to
guest DMA addresses. vIOMMU programs physical [IOMMU to only permit DMA
transactions on the appropriate host pages.

More recently, some work implemented page fault capability directly into NIC
controllers NIC page faults |92, FPGA and GPUs. However, this functionality
suffers long page fault resolution delays up to hundreds of microseconds [143].

5.2 Automatic tiering of VM memory

In previous section, we have shortly presented the mechanisms used to guarantee
isolation of virtual machines between each others. We have presented how virtualiza-
tion extensions provided by processors helps to speed up execution of virtual machines
for memory management or 10 device managment. In this section, we try to de-
termine how VMs behave on heterogeneous memory systems and in particular how
automatic page placement can be performed at hypervisor level. Since VMs directly
run inside processes, it could be tempting to automatically place pages in memory
tiers by reusing automatic page placement techniques used for process memory man-
agement and described in section . However, as identified by vTMM [131] VMs
suffer additional constraints which we review in this section. We review these con-
straints for each independent mechanisms that is to say first for page tracking, then
page classification and finally for page migration.
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5.2.1 Constraints on PT scanning

As noted by vIMM |[131], classical page tracking techniques are not well suited
to be used to track VM pages at hypervisor level. Raminate [69] is an EPT scanner
which scans the entire extended page table for inspection of Access and Dirty bit in
EPT page entry. However, full EPT scans are very long.

DAMON [116] is a Linux kernel service which monitors the access bit of EPT pages.
It uses region sampling to reduce the overhead of scanning. However, it uses a static
number of regions [131].

Hemem [122] which is a non-virtualized page table scanner uses Intel PEBS. How-
ever, Intel PEBS only supports host virtual addresses and not guest physical ad-
dresses.

Autotiering [85] relies on NUMA page fault tracking.

vIMM |[131] relies on a CPU extension for virtualization to get a list of accessed
guest pages and to prevent entire page table scans. This feature named Intel Page
Modification Logging (PML) adds an entry to a page modification log after each
modification to a guest-physical address that sets an EPT dirty bit. vI'MM works
as a kernel module which records the root address of the last level of the page table
(PMD dump for 4kiB pages, PUD dump for 2MiB pages) in a local map. At the
beginning of each new scan phase, vIMM module clears A /D bits of each page table
entry of guest page table, then clear dirty bit in extended page table. A new scan
phase is started again after a monitoring time window. An active page is stored in
higher level pages to avoid interference on A/D bits. Promotion and demotion of
levels is performed like in Linux LRU with two consecutive observation of A/D bit
set or cleared respectively.

One of the problem of vTMM implementation is that they pollute A/D bit
setting in the guest for page cache writeback and swap writeback. They blacklist
guest page cache pages to avoid this problem which breaks transparency and still
causes problem for swap support in guest OS.

5.2.2 Constraints on page classification

VM Working set estimation next requires page classification to separate hot pages
set from cold pages set and to also assess pages access types (reads or writes). vIMM
[131] observes that relying on Linux LRU is not ideal since it does more than basic
access frequency counts as it also contains information on how accesses are performed
[131]. Using frequency thresholds to determine when a page has become hot does not
account for the diversity of workloads. More generally, existing page classification
techniques do not differentiate read/write performances during classification.

vIMM [131] similarly to Autotiering [85] performs access count ranking. They
maintain read/write frequency for each page and sort them by order of frequency.
They introduce read and write weights to account for asymmetry of heterogeneous
memory latency and bandwidth. The size of hot set and cold set is determined by
the size of the underlying slow and fast memory.
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5.2.3 Constraints on page migration

Traditional page migration techniques used in hypervisors would cause large
overhead. Parallel copies of transparent huge pages used in Nimble and Autotiering
causes slower accesses during migration. Indeed, these implementations rely on
the hypervisor to unmap memory ranges before performing the page copy. Other
prototypes like Hemem [122] write-protect pages before migrating them to obtain
access throttling. But, write-protected pages in hypervisor causes VMEXIT which
have been shown to be expensive in earlier work in shadow page table memory
management for example.

vIMM [131] also relies on Intel PML to migrate pages which have been dirtied
during migration. vI'MM also perform parallel page migration and performs a first
phase copy. After the first copy it changes the mapping of virtual addresses to
the new physical address for all pages. Pages which have been reported dirty by
PML log are reported in a dirty bitmap. These pages are copied again in a second
phase copy. Convergence of page migration happens in two phases because pages
are unmapped.

They limit the number of VMEXITs by relying on PML rather than write-
protection. They show that PML based page migration and write-protected page
migration (as in Hemem) perform identically and outperforms Linux page migration
by a factor of 2.

5.3 Collaborative Memory Management

In section|d. 1| we have reviewed internal mechanisms used by hypervisors to guar-
antee isolation between VMs. We have shown how hypervisors build VMs abstraction
to provide the foundations for the execution of a guest operating system. VMs are
executed inside hypervisors which support classic OS services such as scheduling or
memory management. Thus, there exists two levels of OS services which can, in
some cases, work against each other in uncollaborative ways. In section |5.2, we
have discussed existing memory management techniques which try to perform best
page placement decisions despite limited knowledge of guest internal memory man-
agement.

In this section, we first discuss the problem of semantic gap between guest mem-
ory management and hypervisor memory management. Then, we review proposals
to use collaborative information provided by the guest to hint the hypervisor of page
state and usage to prevent suboptimal decisions.

5.3.1 Semantic gap in memory management

Previous work [8, [130] have demonstrated that swapping pages in the host is
inefficient. They identify multiple scenario where lack of collaboration between guest
and host in the case of host swapping causes severe degradation performances.

Silent swap writes [8] occur when the guest wants to read page content of a page
which is in VM disk image. It loads data in memory and the host swap-out the

page.
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Stale swap reads 8] happens when a guest wants to perform a disk read from its
disk image to its memory. The host performs a swapin operation to bring back the
destination buffer in memory. Guest performs read operation to write disk content
in destination buffer.

False swap reads |8] occur when the guest overwrites a page which is not present
in the host, the host will swap-in the page just for the guest to overwrite its content
with its new value instead of directly writing the value on disk. This happens
when the guest performs copy-on-write (COW) or page zeroing before use (after an
allocation).

Decayed swap sequentially 8] happens when the host swaps out pages from the
guest reading contiguous data from its disk. It causes contiguity loss which prevent
prefetching.

False page anonymity [8] describes the fact that all guest pages are seen as anony-
mous by the host which swaps them regardless if they are file-backed or anonymous
in the guest.

Dual swapping [130] occurs when a guest tries to swap a page already swapped
by the host. vswapper [8] proposes a full-virtualization solution to deal with all
previously stated problems.

5.3.2 Collaborative techniques

Collaborative Memory Management (CMM) [130] has entirely redesigned a mem-
ory management system which requires the guest to share memory management such
as usage and residency state information with the guest. CMM maintains a state
machine in the host based on information provided by the guest. They use a state
machine in the hypervisor to track usage state (Can page content be dropped (guest
clean page cache)) and residency states (Page Present, Page contains zero). Their
collaborative solution reduces the amount of paging.

5.4 Virtual Machine Orchestration

In previous sections, we have detailed system-level mechanisms to execute VMs
with a focus on memory management to improve resource usage. An alternative
way of improving resource usage in datacenter relies on orchestration of VMs at
datacenter scale. The understanding of orchestration solution is important to design
relevant abstractions at system level. Thus, this section present basic understanding
of VM orchestration which we use to carry on the discussion in the following sections.
In this section, we first sketch a basic model to detail the different problems which
need to be solved during VM allocation and migration. Second, we try to dig into
memory waste from a VM scheduler perspective. Third, we review challenges in
scheduling VMs on a set of nodes with discussion of VM allocation and VM migration
where VM scheduling is involved.
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5.4.1 VM allocation and migration model

One of the existing solutions to increase datacenter resource usage is to perform
an optimal placement of VMs on the physical machines. One approach is to perform
static VM placing at VM allocation time. The other approach is dynamic VM
placing which tries to migrate VMs during their execution time.

Distributed dynamic VM consolidation can be divided into a set of 4 sub-
problems [21]:

1. Host underload detection tries to assess when VMs should be migrated to
switch the host into low-power mode.

2. Host overload detection tries to assess when the host is facing pressure and
VMs should be migrated elsewhere.

3. VMs migration set tries to determine the set of VMs which should be migrated
from an overloaded host to another host. It can choose VMs based on various

options but usually select VMs with low activity to avoid downtime in used
VMs.

4. Destination node selection is where the bin-packing problem is encountered.
The goal is to find a server with enough free resources to start the VM. It
commonly relies on allocation heuristics to guarantee that the worst allocation
solution over the optimal solution is bounded by a maximum constant.

5.4.2 Understanding memory waste in the DC

Previous paragraphs have presented a basic model to understand the key chal-
lenges in VM orchestration . This model enables to understand optimization issues
from a high-level perspective where allocated resources match used resources. How-
ever, at system-level VMs rely on overcommitment techniques (similar to plane over-
booking) where allocated resources may be higher than available resources based on
the observation that not all resources are used at the same time.

In the following paragraphs, we present Pond [95] model to understand memory
waste in the datacenter. Figure[5.1|represents the two main contributions of memory
waste in a datacenter: stranded memory and unused memory.

5.4.2.1 Stranded memory

Pond [95] defines stranded memory as a server memory leftovers following reser-
vation of all CPU cores by virtual machines. Pond reports that stranded memory
increases with the number of cores and claim an average of 25 % of stranded memory
in Azure Datacenters.

5.4.2.2 Unused Memory

Pond [95] also defines unused memory as the difference between reserved memory
resources and used memory in the VM. This metric varies over time, however, Pond
reports that 50 % of VMs touch less than 50 % of their memory.

7 Yohan Pipereau



5.4. VIRTUAL MACHINE ORCHESTRATION

Unused Memory VM4
P(Used(t)<0.5)<0.5 *

pending...
VM1 VM2 VM3
1 I3
Used(t) Free(t) Used(t) 2 |5 Free(® Stranded Memory
e 25%"
Allocated Allocated Allocated Free < Sel"ver]_

Figure 5.1: Stranded and unused memory

5.4.3 Multidimensional Bin-packing problem

As many other allocation problems, the selection of destination node sub-problem
during VM migration is challenged by external fragmentation. That is to say a VM
allocation may fail despite the sum of server free resources being greater than the
allocation goal.

5.4.3.1 Bin-packing

Virtual Machine placement on a set of nodes is often referred to as VM packing.
The problem of VM packing can be reduced to a multi-dimensional bin-packing
problem known to be computationally NP-hard. [163].

5.4.3.2 Heuristics

Despite optimal VM placement being an NP-hard problem, it is still possible to
rely on heuristics to satisfy basic requirements. These heuristics guide VM allocation
to guarantee low allocation time while limiting the number of extra number of
resources required compared to an optimal placement solution. For instance, next-
fit allocation policy guarantees that VMs allocated under this policy will not use
more than twice the optimal solution. Similarly, First-fit and best-fit never require
more than 1.7 times more resources than the optima solution.

5.4.4 Virtual Machine Allocation

Virtual machine allocation is commonly issued by a VM scheduler like Protean
[62] or Google Borg [150]. It tries to place virtual machine request once on a set
of server given the knowledge of reserved resources it is aware of. VM allocator
have a lot in common with job or task scheduler which are widely covered in the
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literature. There are different possible architecture either using distributed agents
or centralized decision-making.

5.4.5 Virtual Machine Migration

VM migration consists of moving the execution context of a VM from a source
server to a destination server. VM migration is a practical feature used for hypervisor
upgrade [110] and to reduce datacenter fragmentation in a similar manner to page
migration (see §3.5.1)).

Historically, there have been attempts to perform migration on processes di-
rectly. Although, processes are not a good unit for migration since they have hard
dependencies on operating systems interfaces (system calls, ...) and shared libraries.
These dependencies require exact compatible software versions running on source
and destination nodes, which is infeasible in practice with different OSes distribu-
tions and software stack used. Since VMs ship a full operating system, there is no
need to solve conflicts in software stacks. Instead, compatibility must be ensured on
hardware devices used by the VMs. Thus, VMs are a better fit for migration.

Virtual machine migration is an important feature of virtual machines since they
enable datacenter defragmentation.

5.4.6 VM migration techniques

An hypervisor provides an interface to migrate virtual machine atomically, i.e.
it provides a roll-back solution if the migration aborts. Successful migrations results
in VM being migrated from a source server to its destination server while failed
migrations abort and let VM resumes its execution on the source node.

Virtual Machine migration performance can be studied according to different
metrics such as VM migration time, VM downtime, application performance degra-
dation, dirty page ratio or VM memory size. Google [126] claims that live migration
downtime is an important factor of live migration. They report 50 ms median
downtime and 300 ms 99th percentile downtime over a million live migration in
their datacenter.

There exists two main implementations of live VM migration, precopy and post-

CopYy.

5.4.6.1 precopy VM migration

The main idea of precopy migration |31] is to begin by copying the whole memory
from the source node to the destination node of the virtual machine while source
CPU runs and to copy processor state at the end. This technique works in multiple
iterations, and after each iteration, the algorithm selects the set of pages which have
been dirtied concurrently with the migration. This technique is implemented in
gemu.

Pre-copy migration minimizes VM downtime and application degradation and
also provides a clean way of aborting the migration [68].
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One of the problem of this technique is that under high page ratio dirtying
this technique shows very long migration time. Thus, this technique must rely on
convergence mechanisms such as CPU throttling or switching to postcopy.

5.4.6.2 postcopy VM migration

On the contrary, post-copy migration [68] starts by migrating CPU and device
state on destination node. Destination node then intercepts page fault and solve
them by fetching pages from source node. In gemu, page fault interception is done
in user-space with userfaultd. Ultimately, it pushes pages to speed up migration and
prevent rarely accessed pages from delaying migration time. This migration algo-
rithm minimizes network overhead by transferring pages only once. This technique
is implemented in gemu.

It is common to find implementation (such as libvirt) which rely on one or two
precopy phases before performing postcopy migration. This permits to speed up the
migration by using precopy memory bulk transfer before falling back to postcopy
for convergence.

5.4.6.3 Oasis partial migration

Oasis [173] proposes a solution to use remote memory by using VM migration
technique. It is based on the principle of partial VM migration as opposed to pre-
copy and post-copy migration which are full VM migration. Their approach to
partial migration consists of migrating the execution context of the VM on another
node and then retrieve remote pages on-demand. It differs from post-copy live mi-
gration by not pushing pages which have not been demanded yet. It results in the
migration of the execution context of the VM and its working set and lets cold pages
on the source node. Though, partial VM migration requires the source node to stay
alive to answer memory pages requests and there could be little energy savings if
the source node needs to answer multiple memory requests.

5.4.6.4 Limits

AggregateVM [30] states that relying on virtual machine migration to offer better
consolidation is problematic because of slowdown caused by migration and the
additional datacenter resource required to perform the migration.

5.5 Challenges of resource usage unpredictability

In the previous section, we have presented some of the challenges to efficient
resource usage from a VM scheduler point of view. In this section we discuss how
VMs resource usage unpredictability further complicates their allocation from cus-
tomer point of view and scheduler point of view. First, we present the problem
of static over-provisioning of instances to avoid resource shortage. Then, we
discuss resource over-commaitment and limitation to this technique.
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5.5.1 Over-provisioning

Several studies show that a virtual machine (VM) often uses considerably less
hardware resources than it has reserved [43, 123, 39} 77).

Quasar [43] shows reserved and used resources at Twitter over 30 days for
an Apache Mesos [13] cluster. They show that 70% of their workloads are over-
provisioned with an average of 20% CPU utilization over 60 % of CPU resources
reserved on average. For memory resources, they show that an average of 40% of
memory is used while roughly 80 % is reserved.

Resource central [39] shows that 60% VMs have an average CPU utilization
lower than 20 %. Because average CPU utilization does not reflect CPU spikes,
they observe that 40 % use under 50 % of their CPU resources to execute at 95 %
of their maximum CPU utilization.

Morpheus [77], an hadoop job scheduler, analyses how their customer provision
jobs. They show that 75 % of hadoop jobs are over-provisioned for a peak usage
with 20 % of job over-provisioned more than 10 times. Similar they show that 90 %
of jobs are over-provisioned for an average usage which also shows that provisioning
based on average usage instead of peak usage would result in 15 % being under-
provisioned.

5.5.2 Overcommitment and resource sharing

An existing approach to avoid wasting unused resources in a virtual machine
is overcommitment. This technique consists on having a total allocation size
larger than the available resources and thus to perform resource sharing of available
resources among allocated resources.

5.5.2.1 High-level resource overcommitment

CPU overcommitment leverages the ability of a system to allocate more vCPUs
than available CPUs on the host. CPU overcommitment is a safe technique since
host vCPU scheduler (same as thread scheduler in gemu/KVM) can multiplex the
access to compute resources without causing process crash. However, the technique
hurts significantly the CPU-time available to virtual machines and leads to service
level objective degradation undesirable when minimal response time is a desirable
property.

Memory overcommitment leverages on-demand paging which lets process allo-
cate virtual memory in larger quantity than physically available. Memory overcom-
mitment may lead to unsafe scenario when no offloading device is registered and
VMs device to actually use more memory than physically available. When an of-
floading device is registered, memory overcommitment becomes safe and commonly
rely on mechanisms to maintain the virtual machine working set in local memory.
However, when working set mispredict a future access, it leads to significant delays
in virtual machine executions.

Cloud provider must deal with two unpredictability phenomenons. First, VM
allocations exhibit patterns but remain highly unpredictable. Second, VM resource
usage is unpredictable.
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5.5.2.2 Unpredictable resource allocations

Protean [62] is a virtual machine allocator used at Microsoft Azure. They ob-
serve that virtual machine allocation requests vary over the week with day-time and
workday having more activity than night-time and weekend days. Moreover, they
observe for a single day with smaller time unit large variations in allocation requests
with up to 2000 requests per second to handle during few minutes time window.

Morpheus [77] is an Apache Hadoop [12] job scheduler which tries to address the
problem of variation in job execution time at Microsoft. It divides unpredictability
sources of execution time of identical jobs as either sharing-induced or inherent.
Sharing induced is caused by scheduler making incorrect placement decisions. In-
herent sources may be caused by code changes or changes in inputs for the job.
Morpheus analyses millions of job allocations over 50 thousands nodes and show
that job requests exhibit periodic patterns but have a part of noise causing unpre-
dictability. They observe potential correlation between resource sharing and job
runtime.

5.5.2.3 Unpredictable resource usage

Overcommitting hardware resources is risky because the load of a VM often
unpredictably increases and decreases for unpredictable durations. |77, (171} 167, 62,
98].

Morpheus [77] shows that job duration is unpredictable from a scheduler point
of view which means that making assumptions on the duration of resource usage is
unpredictable.

Heracles [98] is a cluster scheduler trying to reuse spare resources of latency
critical services. Latency critical services such as webserver are commonly over-
provisioned to meet the service level objectives. This leads to an average of 30%
idle resources in google websearch servers. By sharing resources between latency
critical services and best-effort tasks they manage to reach an average of 90% server
utilization. They manage to maintain Service Level Objective (SLO, a service qual-
ity metric) by observing that resource sharing (CPU utilization, DRAM bandwidth)
degrade performances when saturation occurs only.

Caladan [52], a CPU scheduler, observes similar phenomenon to Heracles when
resources are shared. They name the slowdown resulting from resource sharing inter-
ference. Caladan observes that compression, compilation, spark jobs and garbage
collectors work with sub-second phases of resource usage. These phases trigger
abrupt resource usage changes. For example, Caladan analyses that mark phase of
a GC may consume memory bandwidth which causes a colocated memcached job
to have its 99th percentile latency slowed down by up to 1000 times.

Zhang et al. [171] show CPU utilization pattern in ten datacenters for servers and
original applications named primary tenant. As opposed to primary tenants, they
introduce secondary tenant as resource harvesting workloads which are evictable
tasks trying to execute on remaining resources. They show that main workloads can
exhibit either periodic, unpredictable or constant CPU utilization. Primary tenants
exhibit an average of 85% of usage as a constant workload. However, on average 40
% of servers are periodic with daily and monthly period with 30 % constant usage
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and 30 % unpredictable usage.

Twitter [167] performs analysis of its in-memory cache clusters by analysing the
number of requests to objects and the number of accesses to objects over time.
They show that requests are unpredictable with common requests spikes caused by
cache systems being one of the first component behind frontend service and end-
users. Moreover, they show that the number of objects accessed tends to follow the
number of requests which shows that requests are not always performed on the same
hot keys. They show that object accesses spikes are a result of traffic surges, scan
access patterns, requests retry, ....

5.6 Transient Virtual Machines: Trading service
level for resource usage

In section we have seen that resource usage in the datacenter remained low
because of allocation leftovers and unused resources. These resources which can be
reclaimed by the cloud provider at all time are named transient resources. This sec-
tion focuses on proposals to run VMs with degraded performances and availability
to monetize these transient resources as much as possible. First, we present pre-
emptible VMs which can simply kill instances carelessly to give back resources to
the hypervisor. Second, we discuss approaches which try to adapt resource usage in
VMs based on available resources. Third, we review harvest VMs, an approach to
dynamacally change VM resources by stealing unallocated resources.

5.6.1 Preemptible instances

Multiple cloud providers such as Amazon Web Services, Microsoft Azure or
Google Cloud have introduced preemptible instances commonly named as Spot-
VMs. This class of VMs are created on unallocated resources of cloud providers
servers. Upon new allocation of traditional VMs, these spot-VMs instances may be
shutdown if the VM scheduler wishes to use its resources. The idea is to sell cheaper
low-availability VMs for customers while enabling cloud providers to increase re-
source usage.

5.6.2 Feedback control of resource usage

Brownout [86] is a software engineering model design which proposes to adapt
applications resource consumption based on available resources instead of extending
resources to match applications. Applications able to perform adaptation are named
brownout-compliant. In their paper, they focus on maintaining a cloud application
response time (setpoint) with varying compute time available for oversubscribed
vCPUs (input). First, applications must be designed with a separation concern
to split response between mandatory part and optional part. The approach will
adjust resource consumption by degrading optional responses quality. Second, ap-
plications must present a dimmer used to affect response quality and amount of
consumed resources. Third, a controller performs feedback control to adjust the
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dimmer based on response time observations. A statistical study on an advertising
system shows that a self-adaptation approach enables more robustness in case of
usage spikes, hardware failures of performance interference. However, their work
requires redesigning applications and some applications only implement mandatory
features. Moreover, they only focus on vCPU compute resources inputs without
focusing on memory resources usage.

Resource Deflation [132] tries to address the problem of transient VMs being
preempted (i.e. rescheduled or killed) when more resource is required. The paper
proposes another approach based on cascading resource reclamation at different lev-
els: The paper first identifies that leveraging hypervisor resource reclamation leads
to inefficient reclamation caused by hypervisor being unaware of guest memory man-
agement. Resource deflation instead proposes a cascade deflation mechanism which
begins by reclaiming application resource before resorting to guest OS reclamation
and finally when previous steps did not meet the expectations resort to hypervisor
reclamation. They implement application deflation in memcached and JVM. Mem-
cached deflation policy is performed by doing object eviction out of the cache by
calling LRU.

5.6.3 Harvest VMs

Harvest VMs [4] is a concept recently popularized by Microsoft to increase con-
solidation ratio in their datacenter similarly to what Spot VM do. HVMs are collo-
cated with regular VMs but steal their unallocated resources to dynamically adapt
resource usage while offering mechanisms to give back borrowed memory.

In this section, we have introduced transient virtual machines, a set of prototypes
which trades service level guarantees for higher consolidation ratio. There exists
other means to achieve higher consolidation ratio motably by leveraging memory
disaggregation and integrate it with orchestration.
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5.7 Orchestration of disaggregated resources

Previous sections have shown how resource usage could be improved by the use of
local system mechanisms to adapt resource usage (section@) or datacenter reconfig-
uration (section . The emergence of new rack-scale interconnects and prototypes
for disaggregated memory permits new scheduling opportunities by using resource
leftovers not just on a local server but on remote server too. This section proposes a
review of the different VMs architectures proposed to use remote resources. First, we
discuss an approach based on granting exclusive ownership of remote memory pool in
a rack to a single VM. Then, we review proposals to distribute the execution of a VM
on resource leftovers from multiple servers. Finally, we present resource pooling, an
approach to disaggregated memory where stranded memory in a rack is aggregated
into a memory pool abstraction accessed using cache-coherent interconnects.

5.7.1 Memory Partitioning

Fastswap [7] and Infiniswap [61] propose partitions of remote memory by running
on a server a RDMA application server to establish RDMA connection.

Infiniswap [61] evaluates cluster wide memory savings using random placement
of 90 containers on 32 machines. They use 1.47 times more memory than without
infiniswap which is undesirable however they achieve better memory balancing than
without infiniswap where entire servers had no memory usage. [

Fastswap [7] retrieves disaggregation profiles (application performances degra-
dation over varying portion of remote memory used) for various applications. They
implement a scheduling algorithm with two phases. First, they check whether the
job fits in the node by checking if the number of cores available is sufficient, then
verify if enough local memory is available before falling back to checking if enough
far memory is available. Second, they perform a rebalance phase where they assess
how much far memory should the job use. Then, they require a policy to define the
minimum local memory which should be used.

When accessing remote memory is required to run the job, they propose multiple
policies such as universal minimum, a per-job minimum and a memory-time
minimum which is computed based on observation of the two previous policies.
The universal minimum policy is a static minimum ratio of remote memory all jobs
can use. The per-job minimum defines the minimum policy statically but for each
job.

Memory-time is a metric which reports how long memory is used which accounts
for actual datacenter memory consumption over time. They define local memory-
time savings as the memory-time of local memory only if application may perform
remote accesses and if the application executes locally exclusively. They define
remote memory-time as the memory-time of remote memory. Fastswap scheduler
must find a trade-off between having more remote accesses which leads to longer
local memory usage and performing every access locally which is expensive in terms
of local memory used. Thus, they try to maximize the ratio of local memory-

!Their rack-scale memory usage is quite arguable because of high standard deviation in mea-
surements and a single run for memory balancing.
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time over remote memory-time. The ratio is maximized during execution of
rebalance phase at regular time interval, and it depends on the knowledge of job
execution time, the local memory ratio, the progress of job ratio. A limitation to
their scheduling policy is to consider the resident set size of a process to be constant
over time which is proven false.

Fastswap relies on a simulation framework to evaluate their scheduling policies.
They show that using far memory can improve workload execution for jobs which
are limited by available memory. They also show that upgrading available memory
on a server yields higher makespan. However, local upgrades cause memory waste
because additions are performed at fixed-size granularity. Moreover, for around
20% remote memory usage jobs memory-bounded jobs, jobs which perform poorly
on fragmented servers see larger improvement in their makespan.

5.7.2 Distributed VM

GiantVM [170] is a recent attempt to run a single virtual machine on multiple
host. GiantVM targets virtual machines with large memory capacity. Their proto-
type directly hijacks Linux KVM EPT page fault handler logic to implement Ivy
[96] cache coherency protocol.

AggregateVM [30] is another proposal to leverage distributed shared memory
abstraction to execute virtual machines. They also rely on Ivy’s algorithm but
exhibit better performances by implementing DSM in kernel and avoiding expensive
privilege level changes. They rely on Popcorn Linux, a modified Linux kernel which
runs per-CPU Linux kernel to expose a single system image.

In order to speed up their DSM, they expose a runtime NUMA topology to hint
memory latencies and help allocation decisions. Moreover, they share guest page
table and interrupt table location with the hypervisor to try to reduce DSM traffic
on these pages. They also propose to let IO devices bypass the DSM for faster and to
access exclusively local 10 devices for quicker accesses. AggregateVM demonstrates
2.5 better performances than GiantVM.

AggregateVM also extend a VM scheduler to support a fallback allocation policy
when a VM allocation is not possible. Thus, they implement a best-FIFO policy
where they look for the minimal number of nodes satisfying the VM vCPU allocation
constraints before starting the VM. Interestingly, they hook on VM termination to
upgrade an aggregateVM to a local VM.

5.7.3 Memory Pooling

Pond [95] proposes one of the earliest models of memory savings possible with
the use of CXL type-3 devices. They use stranded memory on each server to create
memory pools shared by multiple sockets in the rack. Pond proposes a memory pool
abstraction where memory can be hot-added and hot-removed by slices of 1 GiB to
the pool with respective costs of a few ns/GB and 10-100 ps/GB. They show that
sharing memory between 16 to 32 sockets would enable 10 % memory savings.

One could believe that a pool should be shared by all sockets of the cluster, but
this would result in significant performance degradation. For different disaggregation
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ratio (%) of 10%, 30% and 50%, Pond observes that pools shared by more
than 16 sockets enable limited memory savings. Indeed, memory savings becomes
asymptotic with the number of sockets sharing the pool because VMs may only use
stranded memory pools, but it is limited in using CPUs on the same machine.
Pond also relies on a machine learning model to predict the amount of untouched
memory of the VM which they try to place on CXL memory. Moreover, they build
a model to estimate VM slowdown depending on how much remote memory it uses
(this is similar to fastswap [7] disaggregation profile) Their model uses a Random
Forest classifier algorithm by collecting VM execution traces for 200 hardware coun-
ters. They try to identify which hardware counters are more relevant to predict
untouched memory and VM slowdown and find that DRAM boundness alone is
satisfactory though it can be improved by using other counters. They show that
they are able to decently forecast VM untouched memory with an average of 25%
untouched memory per VM with less than 5% over-prediction of unused memory.

In this section, we have proposed a generic overview of VMs with a review of use
cases and services they offer. We have seen how these services are enforced by OS
mechanisms with different solutions for instruction execution, memory management
and 10 device emulation. We also presented how hardware enables to accelerate the
execution of VMs.

Then, we have discussed how memory management hypervisor mechanisms apply
to the use of heterogeneous memory. In particular, we have reviewed solutions to
offer automatic placement of pages on heterogeneous tiers at hypervisor level and we
have discussed the limits of these solutions.

Next, we have reviewed how the use of two level of memory management (hyper-
visor and guest OS) hardens decision making for automatic page placement and how
collaboration between guest and host can help achieve better performances.

The second part of this section introduces the problem of resource usage in dat-
acenters executing VMs. We have first reviewed a basic model to understand chal-
lenges of the VM scheduler to perform optimal VM placement to reduce resource
usage. Then, we explain the problem of load usage unpredictability which is the root
cause of resource overuse. We have seen propositions from cloud providers to adapt
resource provisioning of VMs with resource remaining and VM needs.

Finally, we have seen that new VM architectures using low-latency far memory
accesses can improve resource usage by leveraging clever memory placement on the
different memory tiers.

In this part, we have presented a review of academic and industry solutions to ex-
ecute VMs with reduced resource consumption at datacenter scale. We first started by
a review of new memory backends and their properties before showing the motivation
behind new cache coherent interconnects for rack-scale computing. In particular, we
have focused on CXL which has become over the last few years, the industry standard
for remote memory accesses.

Howewver, the possibility to access new remote memory hardware requires oper-
ating system level assistance to maintain or propose new memory management ab-
straction to applications. We have started by reviewing the core concept of memory
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management in the Linuz kernel to understand the implementation of legacy abstrac-
tion in a modern operating system. Then, we have discusses solutions for memory
management on heterogeneous memory tiers and their applicability to disaggregated
memory.

In a subsequent section, we have reviewed networking solutions for disaggregated
memory with the use of RDMA, the best fabric currently available for rack-scale
remote accesses. We have proposed to review mechanisms and challenges of trans-
parent OS-level memory disaggregation prototypes and we have seen how information
18 semantically loss through the different layers of memory management.

We have ended our review with a description of the reasons behind resource waste
in datacenters running VMs and the different proposition to solve these challenges.
In particular, we have shortly presented solutions in VM scheduling which rely on live
magration for continuous relocation of VMs at the cost of critical downtime. Then,
we have presented server solutions to dynamically adapt resources to match actual
VM usage. Finally, we have seen challenges and solutions to use remote memory in
VM to fill memory leftovers at rack-scale and reduce resource waste.

Based on this review, the next chapters first present our proposal to offer trans-
parent remote memory accesses to VMs in the rack. Second, it proposes a solution
to implement fast memory elasticity in VMs and to tackle semantic gaps issues in
the design of VM memory management.
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ODswap, transparent RDMA VM accesses

In part[], we have reviewed the various contributions related to memory disaggre-
gation and virtualization. We have proposed a discussion which focuses on existing
techniques for management of tiered memory systems and another discussion around
virtual machines. However, the integration of remote memory accesses with VMs
remains mostly uncovered with only very recent work focusing on that aspect. It
1S even more surprising since virtualization is one of the well-known use case of
memory disaggregation which is expected to increase resource usage in the rack.

In this chapter, we present ODswap, a solution to offload on remote memory,
a set of carefully selected pages from VM memory. Our solution tries to maintain
application transparency that is to say we try to ensure that no source code changes
15 required in applications to support memory offloading.

In the following sections, we present ODswap in more details. First, we discuss
the motivations behind ODswap. Then, we present our design and implementation
proposal for ODswap. Finally, we conduct evaluation of ODswap with a study of
performances and use cases made possible.

6.1 Motivation

As presented in there exists multiple proposals to leverage Linuz kernel
swap to perform remote memory accesses using RDMA accesses. We have presented
how swap supports transparent offloading of 10 operations to remote memory with
a selection of least-recently-used anonymous pages. Swap and kernel LRU has been
a state-of-the-art mechanism for remote memory accesses in many works on disag-
gregated memory [57, |61, |7, 155, |100].

The support of VM execution with memory offloading techniques (e.g. swap)
has been proposed in previous works (113,29, |120, 44]. However, these prototypes
still suffer multiple limitations to be adopted in a datacenter. Qazi et al. [120]
only demonstrate the interest of offloading pages on remote memory over local stor-
age by reusing ezisting networking storage protocols. MemX [44] proposes a very
similar design to ODswap but since it does not use RDMA, it performs expensive
network processing on the memory server side. Fluidmem [29] has been published
concurrently to the prototyping of ODswap, and it illustrates that user-space page

90



6.1. MOTIVATION

fault handling (e.g. userfaultd) can deliver faster eviction and fetches of pages than
swapping. However, all Flutdmem memory offloading is performed in the hypervisor
and suffers from uncollaborative memory management between the guest and the host
similarly to swapping. Thus, we design ODswap to propose a solution for remote
memory accesses in virtual machines which is transparent to guest applications.

In this section, we review some of the limits we have identified in existing so-
lutions which we address in our work. First, we discuss possibilities and use cases
enabled by memory disaggregation for VMs orchestration. Second, we review the lim-
its we have identified in existing prototypes which we address in ODswap. Finally, we
discuss additional constraints introduced by VMs regarding memory management.

6.1.1 New possibilities enabled by memory disaggregation
for VMs

Memory disaggregation is driven by different use cases such as larger memory
resources for in-memory database systems (e.g. redis, memcached) or in-memory
compute frameworks (e.g. Spark). Early proposals also observed an immediate po-
tential to improve resource usage in datacenters running containers jobs or VMs. In
this section, we discuss two immediate gains offered by memory disaggregation for
VMs with higher consolidation ratio and reduced migration time.

6.1.1.1 Improving VM consolidation with remote memory

Based on the prior benefits drawn from storage disaggregation in datacenters, it
has been identified that enabling remote memory accesses would enable to achieve
higher consolidation ratio. Indeed, in all VMs architectures leveraging remote mem-
ory accesses, it is expected that the VM scheduler will have new opportunities of
VM placement on stranded memory. For instance, in DSM-VMs architecture
stranded CPUs and stranded memory of multiple servers can be summed up to
allocate a DSM-VM on the aggregated resources. In memory pooling architecture
§5.7.3, a VM allocation request which needs to satisfy CPU and memory constraints
needs to find a server with sufficient processors available while the memory alloca-
tion requests can be satisfied by summing up stranded memory on different servers
or by allocating memory on a unique large memory server.

Thus, supporting transparent remote memory accesses will help to increase mem-
ory usage in a rack. However, accessing memory on a slower tier will degrade appli-
cation performances, thus it is important to limit this overhead.

6.1.1.2 Improving migration time with remote memory

Another potential interest in the use of remote memory for virtualization is to
reduce live VM migration time. Indeed, during live VM migration, VMs are exe-
cuted at slower speed because of expensive page fault handling used to transparently
handle the migration. VMs even end up unreachable during a downtime phase of
the live migration process. Live VM migration is even slower when VM allocated
memory becomes larger.
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Disaggregated memory may help reduce live VM migration time by leveraging
a remote memory tier which can be mapped in both the source node and the desti-
nation node.

6.1.2 Additional challenges to use disaggregated memory
with VMs

We have observed two main limits to the direct use of existing RDMA swap-
ping prototypes for remote memory accesses in VMs. First, if existing prototypes
were used at guest level by passing through a RDMA network cards, virtual machine
memory would be pinned which prevents VM overcommitment. Second, if exist-
g prototypes were used in the host, hypervisor would perform uncollaborative page
placement because of semantic information loss at hypervisor level. We discuss these
two limitations in the next sections.

6.1.2.1 Guest swapping and the memory cost of RDMA passthrough

The use of existing remote memory swap prototypes such as Infiniswap [61] or
fastswap [7] requires passing through RDMA networking cards to the guest. Indeed,
RDMA network cards implement the closed-source proprietary networking stack in
the hardware and there exists no RDMA emulated device for VMs so far. Thus, it
is impossible to emulate RDMA NIC and leverage existing prototypes to perform
remote memory accesses.

Delegation of PCle RDMA network cards to the guest can be achieved using
PCle passthrough and SR-IOV [135].

The module in charge of supporting PCle passthrough in Linux is vfio (Virtual
Function I/O). It is a generic interface on top of architecture and vendor specific
IOMMU drivers. In particular, it interfaces with DMA remapping (DMAR) and
interrupt remapping functionalities offered by IOMMU to enable DMA in virtual
machines while maintaining isolation. One of the known limit to vfio is when a
VM is started with a PCle device, vfio pins all the memory of the VM. In the
following paragraphs, we dig into DMA remapping to understand the reasons for
this limitation.

DMA remapping works by configuring a special page table on a IOMMU device to
map IO virtual addresses (iova) on host physical addresses (hpa). In our case, IOVA
can be seen as guest physical addresses (gpa). Typically, there exists one special page
table for each VM. [[| This per-VM special IOMMU page table guarantees isolation
between two VMs for DMA operations.

Figure describes DMA remapping and its implication with vfio. In details,
the hardware IOMMU page table is filled at hypervisor start time by vfio driver.
The hypervisor vfio driver fills mapping entries to map per-VM IO virtual addresses
(iova) with host physical addresses (hpa). During VM execution time, a guest posts
a DMA read operation by using an iova to represent the buffer where the 10 should
be written by the DMA controller. The iova is transparently translated to hpa by

Tt helps to note the similarity between IOMMU page tables for VMs and MMU page tables
for processes.
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the hardware IOMMU. Similarly, when a guest posts a DMA write operation, it
uses an iova to represent the address of the source buffer and the hardware [OMMU
translates it to hpa to actually read it.

Since vfio is not aware of which pages are used by the guest, it performs preven-
tive pinning of the entire guest physical address space (e.g. all pages are mapped and
present) to guarantee that to prevent DMA 10 error. However, pinning VM memory
prevents memory overcommitment (i.e. allocating more VM memory than hypervi-
sor available memory). This prevents the use of overcommitment mechanisms such
as ballooning which tries to reduce memory usage in each server. More generally, it
prevents sharing unused memory in guest VMs as described in Figure |5.1

There exists two main solutions to support fine-grained pinning of [OMMU pages
which are the use of vIOMMU [143] and IOMMU page faults for unmapped pages
[92]. However, vIOMMU are disabled by default in main Linux distributions and also
introduce communications overhead [143]. IOMMU page faults have been shown to
introduce very large overheads [92].

VM1 VM2

hpa

DMAR table IOMMU DMAR table

ioval iova2

DMA controller 1 DMA controller 2
PCle device PCle device
passed to VM1 passed to VM2

Figure 6.1: IOVA to HPA translation with IOMMU tables

6.1.2.2 Hypervisor swapping and uncollaborative swapping

In the previous paragraphs, we have reviewed how existing swap prototypes
could be used in the guest and the limits to use them. Another direct approach is
to directly register a swap backend in the host to perform remote memory accesses
transparently. Since Linux KVM VMs are executed in processes using anonymous
mappings, hypervisor swap system can directly ofload VM pages on a swap backend.
This solution is fully transparent for VMs, but as reported in section |5.3], it causes
expensive uncollaborative page placement decisions.

Indeed, hypervisor manages a uniform anonymous view of memory and loses the
information of how pages are used (e.g. 10 page cache, anonymous memory, kernel
memory). Thus, hypervisor swapper considers indifferently a page which backs
the guest 10 page cache, anonymous process memory or critical kernel memory.
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This may lead to sub-optimal decisions in Linux swap system with performance
degradation (e.g. swapping a clean page of the guest 10 page cache, while the page
may simply be discarded). We quantify the cost of these sub-optimal decisions in

7.2.2

In this section we have presented possible use cases of disaggregated memory for
VMs. In particular, we have explained how remote memory access helps to improve
VM consolidation and reduce migration time of VMs. Then, we have reviewed the
main issues with the use of existing swap prototypes using RDMA which are not
designed for virtualization. In particular, we have explained why these prototypes can
not be used at guest-level concurrently with memory overcommitment mechanisms
(e.g. ballooning). We also explain why swap prototypes perform poorly when they are
used in the host because of uncollaborative memory management decisions. In the

next section, we discuss how these use cases and challenges have guided the design
of ODswap.
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6.2 Design

In section[6.1], we have discussed the use cases which make disaggregated memory
a promising solution to improve VM packability in the datacenter. We have also
reviewed some challenges in the design of an efficient solution to let a VM access
remote memory. In particular, we have shown how existing prototypes can neither
be used in the guest nor in the host to deliver efficient remote memory accesses.

In this section, we present, memory regions, the core abstraction used in ODswap
memory management. The ODswap memory region abstraction is directly inspired
by RDMA memory regions, and it actively relies on them. We also discuss the
particularities of ODswap memory regions, and in particular how we use them to
implement on-demand memory allocations and freeing of memory.

First, we present the motivation and design of on-demand memory region al-
locations to reduce memory consumption on memory nodes. Second, we begin by
presenting how we use RDMA to support memory regions. Third, we explain how
memory regions are indexed in the guest OS. Fourth, we discuss page management
nside a memory region.

6.2.1 Overview of ODswap

swapper

L1

bock-device

<

odswap

\ virtio-rmem
r paravirt

ypervisor

rmem

i

LN

odswap-server

Node
Figure 6.2: Overview of ODswap design

ODswap is made of three independent layers with different communication inter-
faces. The first layer of ODswap is a guest kernel module which implements the block
device interface. It is responsible for implementing the logic behind IO operations
by maintaining mapping informations. It communicates through paravirtualization
with a second component loaded as a hypervisor kernel module. The second layer of
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ODswap is integrated with the hypervisor compute node as a vhost kernel module.
It implements the virtio server in the kernel to prevent non-scalable NIC address
translations [145]. A third layer of ODswap is located on memory node and serves
allocation and free requests. This is where storage of cold pages are stored.

6.2.2 On-demand memory usage

We have observed a common problem in prototypes using RDMA for remote
memory accesses |7, 61]. These prototypes (infiniswap, fastswap) perform regis-
tration of a large virtual contiguous memory buffer with the RDMA card. Since
RDMA registration causes all pages to be mapped and pinned at registration time
that means all memory is immediately consumed. Currently, the registration oper-
ation of RDMA cards does not offer on-demand page allocation guarantees. This
static usage of memory resources is incompatible with the goal of reducing memory
resource usage at rack scale. Infiniswap [61] manages RDMA buffers at the gran-
ularity of 1 GiB but supports reclamation of these buffers on a persistent storage
backend which makes their solution safely use memory but causes multiple accesses
to be made on slow persistent storage which hurts performances. However, fastswap
[7] directly allocates RDMA buffers when it starts a memory server.

The support of on-demand remote memory usage is not simply an additional
feature, it is required to avoid over-consumption of memory. The implementation
of on-demand remote memory usage is expected to introduce overheads which can
directly impact scheduling decisions such as the decisions based on performance
profiles used in fastswap [7]. In order to best use memory, we have implemented
on-demand allocation for remote memory at coarse granularity. We have defined
a memory region abstraction to describe a contiguous remote physical buffer of
remote memory. This abstraction divides the swap device address space into memory
regions to prevent entire pinning of the swap device address space and support
distributed memory across multiple nodes. Practically, this memory region ships
the start address of the remote physical buffer with the length of the region and a
security key for later accesses.

6.2.3 Remote memory accesses through RDMA

Before dwelling on the details of our implementation, let us review the interest of
using RDMA for remote memory. In section 4.1, we have reviewed the main benefits
of RDMA over concurrent networking protocols. Thus, ODswap is uses RDMA
for communications and leverages some of its advantages described in section [4.1]
Notably, we use zero-copy and RDMA low CPU overhead.

6.2.3.1 RDMA zero-copy and KVM

Zero-copy communications is a technique used in networking to support commu-
nications without copying message payload in a tiered buffer. In communications
with tiered buffers, the tiered buffer must be allocated in the networking stack (e.g.
in the guest OS or the hypervisor). Usually, such buffers are allocated in limited

96 Yohan Pipereau



6.2. DESIGN

regions of memory where DMA operations can be performed. In ODswap, we are in-
terested in zero-copy communications to avoid tiered buffer allocation to cause more
pressure on page reclamation mechanisms (i.e. swap). Indeed, we expect ODswap
to be used in scenario where memory is a scarce resource, thus, it is a bad idea to re-
quire additional pages allocation in the guest or the hypervisor. Both, in-kernel and
in-user RDMA stacks natively support zero-copy communications. The challenge
relies on enabling end-to-end zero-copy communications from the guest application
to the NIC.

In gemu/KVM hypervisor, VMs are executed as qemu processes. KVM, the
OS module which manages virtualization hardware acceleration, is executed in the
process context of the VM (in privileged mode). This enables KVM to map VM
memory and to directly read or write memory on these pages. The ability of qe-
mu/KVM hypervisors to natively execute in the same process as the VM enables
KVM to forge RDMA operations with guest application buffers with no memory
copy between the VM and the hypervisor. Thus, qemu/KVM supports convenient
integration with RDMA zero-copy for networking.

6.2.3.2 RDMA low CPU overhead

Another advantage of RDMA is that it supports a communication mode (i.e.
one-sided operations) where remote CPU is not involved in the data path of commu-
nications. Indeed, this mode directly rely on the DMA controller of the destination
node RDMA card to copy the memory page. One of the advantage of RDMA is to
save CPU cycles on remote CPU which can be allocated for other tasks. Another
advantage is that generating an interrupt for each page offloaded to remote memory
or loaded in local memory is too expensive.

6.2.4 Live VM migration support with remote memory

In section [5.1] we have reviewed the different services offered by VMs. In partic-
ular, we have discussed the use of VMs as deployment units. We have claimed that
they serve as deployment units mostly because they offer limited dependencies to
other software stacks which enables easy live migration. In ODswap, we have tried
to design a solution to issue remote memory accesses with RDMA while maintaining
the support for live migration. One of the requirement to support live migration
is to not only migrate VM memory but to also migrate the mapping information
which tracks which remote memory regions are used.

ODswap guest driver maps swap sectors to memory regions to translate an 10
request issued by the upper swap layer to a RDMA remote address. We have chosen
to maintain the mapping information in the guest since this information is naturally
migrated with the memory of the VM.

6.2.5 Implementation of device IO with in-kernel RDMA

In §4.2.1], we have reviewed some of the problems caused by management of many
queue pairs and memory regions with RDMA NICs. Indeed, it has been identified
that RNICs rely on multiple caches such as hardware addresses translation cache
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or caches maintaining protection keys to prevent illegal RDMA operations. In our
case, the address translation cache is filled by fetching hashmap entries in RDMA
driver memory through DMA operations. In particular, we have seen how RNIC
cache misses could multiply write latency by two when memory translation pages
do not fit in the RNIC cache.

In ODswap, similarly to Lite [145], we rely on in-kernel management of RDMA
communications to leverage 10 accesses using physical addresses directly and thus
to prevent the cost of address translation.

In user-space one-sided RDMA communications, the RDMA application config-
ures address translation and memory protection (see using the RDMA verbs
API. The subset of the userspace RDMA verbs API which supports address transla-
tion and memory protection is known as RDMA registration API and manipulates
a virtual address describing a memory buffer. Contrarily to RDMA one-sided 1/0O
operations which are free of system-calls, RDMA registration methods directly trap
in the kernel as they require assistance of kernel memory management for various
tasks. First, the registration API calls kernel page pinning to ensure the memory
buffer resident when the DMA operation is performed. Second, the registration API
walks the page table to find out physical pages associated with the buffer. Then,
the RDMA driver (e.g. mlx4) inserts new entries in the MTT hashmap for address
translation, and the MPT hashmap for memory protection. These hashmaps are
read-only on the hardware side, and are modified on the software side similarly to
MMU page tables. For each RDMA 1/0, the RNIC performs hardware lookup of
hashmap entries. In ODswap, in-kernel RDMA communications directly use physi-
cal addresses to avoid hardware address translation lookups. However, ODswap still
requires to call the registration API for protection to memory buffers.

In this section, we have reviewed the main design propositions behind ODswap
to improve the efficiency of remote memory accesses using application-transparent
guest swapping. In particular, we have presented how ODswap design builds on top
of known limitations to RDMA memory management and offers on-demand remote
memory allocations to reduce memory usage on remote memory. We have also
presented the reasons behind in-kernel device emulation to avoid unscalable RDMA
performances.

In section [6.3, we present the implementation of ODswap with a review of each
component and how they communicate between each other. We also propose a micro-
evaluation of RDMA and block device parameters to determine their influence on
swapping performances.
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6.3 Implementation

In section we have presented the three different software components used
i ODswap. These components are a guest driver in the VM, an hypervisor module
which serves guest operations and a memory server where memory regions are backed
and which serves memory allocation requests.

In this section, we present implementation of each of these components before
proposing micro-evaluation of some of our choices. We go down through the layers
of abstraction with a first focus on ODswap guest driver. Next, we present the imple-
mentation of the host driver accelerator in the hypervisor. Then, we present the im-
plementation of the memory server to manage remote memory on the memory node.
Finally, we review some of the configurable parameters through micro-optimization.

6.3.1 ODswap guest driver

In the previous section, we have reviewed the design of the memory region ab-
straction used to implement on-demand paging and index remote memory in the
guest. In the following sections, we review the implementation of the different com-
ponents with the guest driver, host driver and memory server.

This section s dedicated to the implementation of ODswap guest driver. First,
we present the integration with the Linux swapper through the block device interface.
Then, we present 10 management with memory regions and their mapping with
device sectors in the memory region tree.

6.3.1.1 Swap interfaces

In Linux, the swap memory management mechanism is responsible for the evic-
tion of cold LRU pages to a slower backend. Linux supports block device backends
and file backends for eviction of pages. It also provides an additional interface named
frontswap which is a caching layer for an underlying block device or file backend.
Thus, frontswap is stacked on top of block-device backends or file backends. In
ODswap, we tried both frontswap and the block-device interface. We summarize
the major differences between the two interfaces in Table Eventually, we found
that frontswap synchronous and page-per-page interface is detrimental to perfor-
mances and, consequently, we rely on the block-device interface.

A swap backend is registered through swapon() system call and unregistered
using swapoff() system call. There are some differences in the I/O API of swap
backends especially between frontswap and block device I/O APIs. However, all
backends support a common set of limited operations. They support store/load
operations to write and read one or more pages on the backend at a specific offset
on the backend. They also support, an invalidate operation which enables freeing the
page on the backend. This operation is known under various names (discard, trim,
deallocate) and it is particularly important for flash drives because these drives use
a hardware copying garbage collector to collect free sectors. Thus, marking sectors
as stale prevents unnecessary copies of stale data during garbage collection.
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’ \ bdev frontswap
granularity scatterlist page
asynchronous support v X
synchronous support v v
size static determined by underlying backend
1O policy hard-coded in driver | determined by underlying backend

Table 6.1: Features comparison between block device and frontswap

6.3.1.2 Implementing ODswap with block device interfaces

The IO stack in Linux is organized in multiple logical layers. Each layer proposes
one core abstraction and provides a set of services which directly operates on it.
There exist different interfaces to implement a block device in Linux. The different
block-device interfaces available in Linux ship different logical layers. There exist
a low-level block device interface (block_device_operations) with limited logic and
a higher level interface named blk-mq (blk_mq-ops) [23] for Multi-Queue Block 10
Queueing. First, the low-level layer is called for allocations of basic 10 information,
and, it may either decide to call the high-level layer for more advanced logic or to
directly deliver the I0O.

First, the low-level layer works on an abstraction named bio. The low-level 10
layer (bio layer) provides a large API which supports mapping of memory buffers on
device sectors, splitting and merging of bios. This layer is also responsible for stack
overflow caused by IO recursion recursion avoidance and queue plugging which tries
to merge sequential requests into a bigger request.

Second, the high-level layer works on an abstraction named request made of
one or multiple bios but destined for a contiguous set of sectors. The high-level
10 layer (request layer) is mostly known for implementing various IO scheduling
and elevator algorithms. Historically, this layer relied on a single request queue,
but it has recently been re-engineered to deliver higher 10 parallelism by providing
per-CPU queues and a queue for each device hardware queue. 10 scheduling and
elevator algorithms, which are mostly relevant for slow storage backend, perform
request reordering to seek better throughput and latency, or batching of requests to
deliver higher throughput with longer latency.

In ODswap, we rely on the high-level interface (blk-mq) and we manage the
three main abstractions from low-level and high-level layers to issue 10 operations
which are segments, bios and requests. First, we manage segments (bio_vec) which
are a physically contiguous buffer in memory identified by the first page backing
the segment, a length and an offset relative to the first page. Second, we manage
bios (block I/0), a data-structure which maps an array of segments with device
sectors. It contains various additional information such as status of the I/O and
potential callbacks for asynchronous completions. Third, we manage requests which
represent a contiguous set of destination sectors. Requests carry a linked list of bios
representing contiguous I/O operations. Even if a request contains multiple bios
which may lead to multiple operations, it guarantees that all operations are of the
same type (for example exclusively read or exclusively write).
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ODswap considers two cases to deliver an operation. Either the operation fits
on the destination memory region (straightforward path) or it overlaps multiple
memory regions (overlapping path). In the straightforward path, the IO abstrac-
tions (segments, bios, requests) directly map with RDMA requests which requires
little effort to deliver the IO. However, in the overlapping path, these IO abstractions
need to be reworked mostly to split the 1O to operate on non-contiguous address in
remote memory. We discuss these cases in the following section.

6.3.1.3 IO management in the straightforward path and overlapping
path

After discussing low-level and high-level block-device interfaces, we present the
three different layers used to implement memory regions in the straightforward path.
Then, we discuss IO management on non-contiguous memory regions with the over-
lapping path.

Straightforward path and overview of layers. As explained in §6.3.1.2] we
implement the block device interface using blk-mq interface. The swap layer forges
bios and encapsulates them in requests before submitting them to the 10 stack. On
our side, we retrieve the requests submitted to blk-mq and differentiate each read,
write and discard requests based on the request opcode. Each request go through
multiple layers.

ODswap generic layer uses sector arithmetic to compute an index to lookup
the memory region in the memory region tree. This layer determines if the request
overlaps multiple memory regions (see details in next paragraph named Overlap-
ping path) and thus it manages memory region vectors. The generic layer calls the
memory region tree interface, which implements on-demand allocation of remote
memory regions, to lookup-or-allocate a memory region The memory region tree
interface simply proposes insertion, lookup, states changes of memory region in the
memory region tree and it is reviewed in more details in

ODswap high-level layer is in charge of building high-level requests which en-
capsulates a vector of low-level request with one request for each memory region
targeted by the 10. It also contains various information such as callbacks triggered
by low-level layer, the original block layer request for notification of IO completion,
a table which describes how the request spans on the different memory regions.

ODswap low-level layer operates on a low-level capsule which contains the mes-
sage request payload as well as completion callbacks triggered by the host. The
low-level capsule is used to implement 10 on a single memory region. The low-
level layer also implements a basic mechanism for queue overflows which feeds back
messages to the queue when it is saturated.

Overlapping path. One of the problem introduced by our memory region ab-
straction is the possibility for an IO request to overlap two physically non-contiguous
remote buffers. Indeed, as presented in previous paragraph, current kernel abstrac-
tion have always relied on the assumption that the sector address space of a device is
contiguous. However, since ODswap relies on remote allocation of physical memory,
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there is no guarantee that two contiguous memory regions will be backed by con-
tiguous physical address ranges. We illustrate this problem of request overlapping
in Figure which presents how ODswap guest driver can manage non-contiguous
remote memory regions.

segment 1 segment 2

guest

physical

address
space

single 10
request

sector
address
space

memory
node

address
space

Figure 6.3: 10 overlapping memory regions

Guest send requests under the form of scatterlist which are a list of segment (i.e.
contiguous guest physical pages). On hypervisor side, we receive the scatterlist of
guest physical addresses which we convert to host physical pages. It is important
to note that this translation is possible thanks to KVM and vhost architecture be-
cause vhost has access to the page table of the process backing the virtual machine.
At this stage, the hypervisor can only map source segments to a single destination
segment. Thus, we introduce rmem_io_map which enables easy mapping of multi-
ple source segments (scatterlist) to multiple destination segments (memory regions).
The rmem _io_map performs automatic computation of the number of one-sided re-
quests required to send the message. It takes into account the number of destination
segments (which changes if in overlapping path or straightforward path), and also
considers the hardware queue maximum size.

6.3.1.4 Creation and discarding of memory regions.

MR freeing. As seen in §6.3.1.2] the swap layer operates on contiguous sectors
represented by requests. However, request sizes are not necessarily equal to memory
regions sizes and requests may be unaligned with memory regions. In particular, this
mismatch requires tracking each time a page is freed on a memory region in order
to determine when a memory region may be discarded by ODswap guest driver.
Free page tracking is implemented on each memory region at page granularity, the
common granularity between 10 requests and memory region.

Thus, each memory region implement freeing by maintaining a bitmap to track
pages in-use. When the bitmap is clear, the memory region is freed.

MR allocation. A new memory region is allocated during the processing of an 10
request issued by the swap layer. Each time an IO requests targets a sector which
is part of a memory region whose state is unmapped, ODswap guest driver sends an
allocation request for a new memory region. In theory, only write IO requests should
trigger an MR allocation requests since the swap system is expected to read pages
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it has previously written. However, in practice, read 10 request with no previous
writes may happen especially when the swap device is registered. At registration
time of the swap device, the swapon utility typically inspects the block device sector
space to detect existing file systems patterns and warn the user of potential data
loss.

6.3.1.5 Memory region tree

In we have reviewed the use of memory regions to integrate I0 manage-
ment with a swap device. In this section, we discuss indexation of memory regions
in the memory region tree and management of concurrent operations on the memory
region tree.

6.3.1.5.1 Indexing memory regions

We implement the memory region tree presented in using a radix tree.
Each memory region maintains a state among UNMAPPED, MAPPED and SENT.
A memory region in UNMAPPED state means that the memory region has not been
added to the indexing tree so far. A memory region in SENT state means that an
allocation request for this memory region is ongoing and the 10 requests should wait
until the memory region is seen as MAPPED. A memory region in MAPPED state
means that the memory region is currently in the indexing tree and all information
are available to perform the 10.

When a write request is first initiated on a memory region which is not in the
radix tree or if the memory region is in UNMAPPED state, ODswap guest driver
sends an allocation request on the remote node and it adds the memory region to
the radix tree and mark its state as SENT to prevent double allocation. When
the guest driver receives the completion of the allocation of the memory region, it
transitions the region to MAPPED state. When a memory region is invalidated, the
driver sends a free request on the remote node and transition the memory region
to UNMAPPED state. However, it does not remove the memory region from the
radix tree to avoid undesirable contention on acquisition of the radix tree mutex.
Asynchronous removable of memory regions is left for future work.

6.3.1.5.2 Concurrency on the memory region tree

There are two main scenario which can lead to concurrent insertion on the radix
tree. First, concurrent insertion in the radix tree may occur in VMs with multiple
NUMA node using one kswapd per NUMA node. Second, concurrent insertion may
also occur during direct reclamation (i.e. reclamation during page fault handling)
where multiple CPUs can initiate direct reclamation concurrently. In order to pro-
tect the radix tree from concurrent modifications, it is protected using a simple
mutex as all modifications occur in sleepable context.

Apart from modifications to indexing tree, memory regions can also be directly
modified when their state changes. Thus, each memory region relies on a spin-
lock to serialize memory region state transitions and protect them from concurrent
mutations either in background reclaim or direct reclaim.
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Finally, since multiple kswapd threads can modify the memory region bitmap,
it is protected using a spinlock.

6.3.1.5.3 Concurrency in interrupt handling

One of the challenging code path is to insert a mapped memory region in the
radix tree. In the previous paragraphs, we have seen that the memory region index
tree is protected using a mutex. However, the completion of an allocation request is
handled in interrupt context of the guest OS which prevents sleeping (i.e. taking a
mutex lock). The challenge revolves around how to insert the memory region in the
tree without taking a mutex. There are multiple solutions to this problem which can
be considered. First, switching from a mutex to a spinlock would result in expensive
CPU consumption to acquire the lock for threads in sleepable context (e.g. process
context threads). Second, the interrupt handling routine could schedule a kernel
thread in process context (i.e. sleepable) to acquire the mutex. But the cost of
scheduling a kernel thread adds too much overhead.

Instead, in ODswap, we rely on a third solution which splits the insertion op-
eration into two phases. First, we allocate the memory region structure and insert
it in the radix tree with state SENT before sending the allocation request. Second,
during completion handling we perform radix tree lookup, and we switch the state
in the memory region to MAPPED.

ODswap guest driver uses a wait queue to block progress of write and read
operations which depends on an earlier allocation.

6.3.1.6 The guest-side of virtio paravirtualization interface

In virtio, messages are delivered by the guest and acknowledged by the hyper-
visor in a shared memory queue (between guest and hypervisor) named virtqueue.
Virtio supports the creation of one or multiple virtqueues for a single driver. For
transmissions of messages between the guest and the host (hypercalls), virtio mainly
proposes two mechanisms. First, it proposes a simple non-blocking interface to post
messages along a context. Second, it proposes an additional method to trigger a
notification on the host side.

Delivering a notification from an hypervisor to a guest is really similar to a device
generating an interrupt to an operating system. Notifications from a guest to the
hypervisor depend on the virtio communication layer used (either PCle or MMIO).
In ODswap we use a virtio PCle device, and the guest sends the notification by
using a register in the 1O space of the virtio PCle device. In the hypervisor side, the
notifications triggers a callback method which consume messages from the virtqueue.

We conclude the implementation review of ODswap guest driver with the guest
side of the paravirtualization interface. In we resume the discussion with the
host-side of the paravirtualization interface before presenting ODswap hypervisor
driver for RDMA communications.
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6.3.2 ODswap host driver accelerator

In we have presented the implementation of the guest driver part. We have
also reviewed the guest side of the paravirtualization interface to deliver messages
to the hyperuvisor. In this section, we present how messages issued by the guest are
handled in the hypervisor side.

First, we discuss the hypervisor side of the paravirtualization interface with the
in-kernel acceleration of 10 emulation. Second, we present how ODswap host driver
manages connections between the different RDMA servers. Finally, we describe
the implementation of memory region operations with independent review of the
implementation of control operations and data operations.

6.3.2.1 The hypervisor-side of virtio paravirtualization interface

In §6.3.1.6] we have discussed the guest-side of the virtio communication inter-
face. In this section, we focus on the hypervisor side of the communication interface.

Message delivery. Virtqueues propose a producer-consumer method for commu-
nication where the guest produces messages and the host consumes them. Virtqueues
conveniently support hypercalls (guest to hypervisor messages) but are less prac-
tical to deliver upcalls (hypervisor to guest messages).

For hypercalls, when the hypervisor receives a message, it invokes a callback
which has been registered when the virtqueue was created.

For upcalls, virtqueues are less convenient as they only support acknowledgement
of requests and can not initiate a request to the guest to an unknown guest buffer.
Thus, the guest must post a request message in the virtqueue before any message
can be sent from the hypervisor to the guest. In the upcall path, the hypervisor can
be considered as a DMA controller which only transmits information to the guest if
the guest has previously posted a buffer for the hypervisor to write a message.

Notifications. Regarding notifications from the hypervisor to the guest, hypervi-
sors can directly inject interrupts to the virtual machine. Thus, the hypervisor im-
plements interrupt delivery by adding a message to the VM Advanced Programmable
Interrupt Controller (APIC) to emulate an interrupt.

6.3.2.2 Acceleration of paravirtual devices with vhost

The oldest and most basic way of accessing devices in a virtual machine is to
use emulated devices. Emulated devices aim at exposing to the guest an interface
similar to existing hardware interfaces. Typically, an hypervisor emulates devices
which have wide driver support (e.g. Intel e1000 networking cards) so that existing
drivers in guest OS code base can be used in VMs. These devices rely heavily on
trap-and-emulate where every accesses cause an exit (trap) from virtualized mode
to the hypervisor. The hypervisor is then responsible for implementing a translation
of the desired 10 using its available IO interface like 1O syscalls, or other storage
stacks (emulate). However, this technique of device virtualization is sub-optimal

105 Yohan Pipereau



6.3. IMPLEMENTATION

because trapping is expensive and the hypervisor can make no assumption about
how the guest manages its device.

Paravirtualization has been proposed to address the problems of emulated device
by proposing collaboration between a guest and the hypervisor to implement commu-
nications. An industry standard for paravirtualization named virtio |147] has been
widely adopted across various hypervisors and OSes. The benefit of this standard
is to offer portable drivers across different platforms which means reduced effort of
development on the guest side to support hypervisors paravirtualized devices. Simi-
larly, this enables hypervisors to support execution of various OSes without porting
the driver code of their device in the different OS code bases.

Paravirtual devices enable higher communication throughput than emulated de-
vices. In Linux and gemu, there exists two main class of paravirtual devices: user-
space and kernel-space paravirtual devices.

Early paravirtual devices were first implemented in the hypervisor in userspace.
However, these implementations suffered from expensive user-space to kernel-space
transitions due to the emulation part of the device. Indeed, emulation can simply
use existing OS abstractions offered by system calls to interact with the hardware.
Since the hypervisor logic is mostly built in user-space, every call to OS abstractions
requires an expensive privilege level change (usually one or more system calls).

Based on this observation, it has been proposed to separate the control part of
device emulation from data communications. In concrete terms, the exposition of
PCle registers, device layout and the establishment of the communication path be-
tween the guest and the hypervisor is still managed by the hypervisor in userspace.
However, the treatment of messages is directly handled in the kernel in order to
directly call kernel mechanisms without privilege changes. In Linux, in-kernel ac-
celeration of the datapath of virtio devices is named vhost.

In §6.2.5 we discuss our motivation to use vhost in our prototype.

6.3.2.3 The cluster of memory and compute nodes

RDMA provides a communication service (rdmacm) to establish connection be-
tween queue pairs of two different nodes. The main idea is that one queue pair
is connected to another queue pair for communications. It relies on IP addresses
provided by an implementation of IP over infiniband to bootstrap the connection
phase. We skip the details of connection establishment in RDMA.

We define a session abstraction made of one o multiple queue pair part of the
same protection domain. Each session represents a connection with a destination
node.

6.3.2.4 Implementation of ODswap memory regions control operations

Our memory region abstraction requires communication between the compute
node and the memory node for some operations such as memory region allocation,
freeing. For these operations, the virtio driver has to perform an RPC on the memory
node. Thus, the virtio driver uses two-sided RDMA operations. We describe the
data-structures used to implement our RDMA RPC implementation.
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6.3.2.4.1 RPC Ring buffer implementation

As explained previously, two-sided RDMA is more similar to traditional in-kernel
TCP stacks with CPU notified when it receives a request. Since allocation and free-
ing requests require CPU processing, we use two-sided RDMA to be notified of the
reception of allocation or freeing messages. Even if it provides a notification func-
tionality, two-sided RDMA still requires low-level support of DMA buffers for com-
munications. Thus, in our RPC implementation, we rely on a set of pre-registered
buffers for message sending and reception to avoid the expensive cost of DMA buffer
registration which requires virtual to IO virtual address translation.

ODswap RPCs build an additional queue pair fully managed in software on top of
the hardware queue pair provided by RDMA. ODswap software queue pair is made
of a RX queue for reception of message and a TX queue for sending of message.
Each queue is implemented as a ring buffer of 4096 ring buffer entries. A ring buffer
entry is composed of a pointer to hold the virtual address of the buffer, a 64 bit
unsigned integer to store the physical address required for DMA operations.

In RX path, the ring buffer entry is used as a work queue element for injection of
interruption in the guest out of the interrupt context as presented in §6.3.2.5.2l Ring
buffer entries also contain a preallocated and DMA-mapped buffer which can host
memory region information (remote physical address, length and remote security
key).

In TX path, we maintain a free list of ring buffer entries with preallocated and
pre-mapped payload. The payload is a fixed size 64 bit integer which encodes the
remote address for freeing operation.

6.3.2.4.2 Tracking back direct allocation issuers

We use a small cache of memory region in the hypervisor to reduce the overhead
of allocation in the critical path. When the cache is empty, instead of having threads
wait for the cache to be filled with new MRs, they can initiates a direct allocation
request which bypass the cache. One of the problem which occurs in direct allocation
is when our vhost module receives a completion event for a direct allocation request
previously posted, it has no direct way of tracking back which virtual machine
initiated the request because virtual machine identifiers can not be embedded in
RDMA encapsulation. Additionally, hypervisor kernel does not really hold a simple
representation of unique identifier for VMs apart from process ID which requires
special handling when a process terminates to avoid loss of memory regions.

In ODswap hypervisor module, we chose to deliver all memory regions to a shared
pool across all VMs. Thus, ODswap uses a circular queue where it produces request
during submission and consume them at completion to enforce FIFO order of direct
allocation requests.

6.3.2.5 Implementation of ODswap memory regions data operations

In this section, we focus on the implementation of data operations on memory
regions.

6.3.2.5.1 RDMA one-sided operations on ODswap memory regions
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The implementation of remote read and write operations on memory region
uses one-sided RDMA operations. Following an allocation, memory regions contain
metadata information used to perform read and write operations on remote memory.
ODswap splits into two modules the part responsible for handling paravirtual 10
operations and the part responsible for performing RDMA communications.

The first module, responsible for paravirtual communications, retrieves 10 oper-
ations from virtqueues and copy the header of the message into a dedicated kernel
buffer. Then, in the payload of virtqueue elements, the module can retrieve the host
virtual address pointing to the guest application buffer used for communications.
The paravirtualization module uses this address to pin pages (i.e. pages are mapped
and present) associated with the buffer and to map these pages in scatterlists used
for RDMA communications in the second module. The pinning of pages is required
by RDMA communication from the initiation of the request until its completion.

The second module, dedicated to RDMA communications, uses per-CPU queue
pairs for read/write communications over RDMA (see details in §6.3.4.2). The
RDMA communication module creates a single completion queue with a dedicated
polling kthread to handle completion of requests. The scatterlist forged after pinning
guest application pages is used to post the RDMA message to the RNIC. RDMA
read-write API in Linux offers an abstraction which automatically support posting
a list of memory segments and to perform the required IOMMU management for
DMA operations. Thus, the RDMA communication module extends the existing
RDMA kernel API to support delivery of RDMA IO on non-contiguous destination
addresses. These modifications are used to reduce RDMA round-trips when guest
requests are performed in the overlapping path (see overlapping path in .

6.3.2.5.2 Forwarding RNIC interrupts to the VM

One of the key performance issue occurs when the hypervisor tries to forward
request completion to the guest. Indeed, the hypervisor receives completion in
interrupt context and needs to perform up-notification to the guest by generating
an IRQ. In vhost, a classical method relies on irqfd, an eventfd based signalling
method between the host and the guest. However, in interrupt context the gemu
process is not mapped in the kernel address space. This makes notification infeasible
in interrupt context.

ODswap hypervisor modules needs a method to forward interrupts generated by
the completion of a one-sided RDMA operation to the guest to terminate the 10
operation. ODswap receives completion event in interrupt context and it enqueues
the interrupt injection job in a work queue for deferred scheduling. It tries to batch
interrupt injection by adding a linked list of allocation capsules (a capsule holds
both request and completion structures). Then, once the work element has been
scheduled in the host in the gemu process context, the work element loops over
the list of completion events and determine the virtqueue where the request was
initiated to set a bit in a virtqueue bitmap. Finally, the work job injects the request
to all virtqueues which have bits set.

6.3.2.5.3 Handling concurrency between page migration and RDMA
read
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One of the problem which we have experienced is a race condition between live
VM migration and the completion of allocation request where the allocation callback
will copy the memory region in the VM. In details, after sending a request for
allocation, a VM may initiate live migration and complete before the completion
of the allocation request. It results in remote memory leak with a memory region
allocated but the memory region metadata are lost which prevents freeing.

In order to solve the race condition presented in the previous paragraph, we
rely on a technique introduced in vhost-net driver to support zero-copy [102] in
VM networking devices. Thus, the hypervisor module for paravirtualization com-
munications uses a reference counter which is atomically incremented each time an
allocation request is performed and decremented when the memory region is writ-
ten in guest memory. When the hypervisor module is released, it decrements the
reference counter and waits in a wait queue until the reference counter reaches zero.
The wait queue is woken up to test if the reference counter equals zero, each time
the allocation completion callback is invoked.

In we have presented the implementation of ODswap device emulation in
the hypervisor. We have presented our implementation based on the in-kernel virtio
server named vhost and the details for the implementation of the ODswap host-side
memory region with RDMA. In particular, we have presented the implementation
of RPC' for control operations on memory regions with support for memory region
allocations and freeing. In we present ODswap memory server to present
how memory regions are managed on the memory node with the server side imple-
mentation of control operations.

6.3.3 ODswap memory server

In and we have reviewed the two compute node components which
implement remote memory accesses. In this section, we present the memory server
used in the memory node.

The memory server is implemented as a kernel module responsible for serving
memory regions control operations. We present the details of implementation of this
module in this section. First, we discuss the implementation of ODswap memory
regions control operations along the allocation of large memory buffers in the ker-
nel to back memory regions. Second, we present the challenges of RDMA memory
registration and the solution we chose.

6.3.3.1 Implementation of ODswap memory regions control operations

As presented in §6.3.2.4) memory region control operations, i.e. allocation and
freeing requests, are implemented as two-sided RDMA operations. In the memory
server kernel module, RDMA message reception is performed in interrupt context.
It distinguishes free and allocation requests but in all cases, the implementation of
server side of the request is made out of interrupt context which prevents sleeping
mechanisms. Thus, we schedule control operations into a work queue executed in
sleepable context.
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We perform the following steps to implement memory region allocation on the
memory server. We allocate the memory by getting a zeroed physical contiguous
buffer from the SLAB allocator. Next, we call RDMA registration API which pins
pages and pushes the buffer in the memory protection table of the RNIC. The list of
allocated memory region is maintained in a radix tree index by the physical address
of the memory region in order to call RDMA unregistration of the memory region
and to free it. Finally, the memory server forges two-sided message with a response
ID matching the allocation request ID to answer back to the compute node.

A compute node invokes ODswap memory region freeing on the compute node
by giving the physical address of the memory server as an identifier of the memory
region. The server implements free operation by looking up memory regions in the
radix tree and unregistering memory region and freeing it.

6.3.3.2 Allocating large memory buffers

If one node is used as a memory pool, it needs to be able to allocate large memory
buffers.

The problem is that kmalloc() has a limit for allocation size. Indeed, because
of memory fragmentation, it becomes hard after some point in time to offer a con-
secutive physical memory buffer. Thus, kmalloc() limit is small for the purpose
of storing multiple memory pages. Linux offers an alternative named contiguous
memory allocator (CMA) and reserve at boot time a contiguous portion of physical
memory which is blacklisted by the buddy allocator and managed by the CMA allo-
cator. Though, this alternative is not very convenient because it requires rebooting
when more memory is needed and the contiguous memory can not be used by the
system for other purposes.

This limitation has led us to aggregate multiple memory regions of small size
(A default value of 64 pages of 4096 B). It is also more convenient for on-demand
allocation as detailed in section 3.4.5

6.3.3.3 Memory registration

One of the main challenge in designing efficient RDMA programs is to cleverly
perform memory registration locally and deliver buffer descriptors (IO virtual ad-
dress, length and security key) which can be used for communication with the other
peers. Multiple works have studied memory registration architectures in the context
of high-performance computing programs. There are different strategies available.

Full pinning. The first strategy is full pinning which consists of relying on pre-
allocation and to perform memory registration on a set of buffers which will be used
later. However, this approach either requires perfect knowledge of which memory
will be needed in the future, or it will waste memory resources by pinning pages and
preventing other tasks from using it.

Coarse grained. The second strategy is coarse grained approach which also relies
on pre-allocation and pre-registration, but it proposes to work with static memory
buffer sizes for communications. This approach removed memory registration from
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the critical path and may limit the amount of communications between peers to
issue requests. Thus, this approach reduces significantly physical memory consump-
tion and still allows requests to be directly submitted without waiting for memory
registration.

Fine grained. The third approach relies on fine grained management with one-
sided communications used to communicate the size of the message to be sent and
retrieving the available buffer to issue the request. This information exchange is
required for every message which makes it undesirable.

Hardware page fault support. A fourth approach, recently proposed in [92] use
hardware support to remove the burden of memory registration for DMA commu-
nications by using a special DMA page fault handler to support on-demand paging
of DMA buffers. This page fault handling approach is similar to current MMU
used for virtual memory translations to physical memory. This technique enables
memory overcommitment between RDMA devices and other programs by issuing
on-demand page allocation on first DMA accesses. However, it has been shown to
hide the overhead cost in page fault management, and it is not widely available yet.

In our architecture, we rely on coarse-grained management of memory at the
unit of static memory regions.

6.3.4 Late optimizations and configurable parameters
6.3.4.1 Late optimizations

In the following paragraphs, we describe late optimizations we have implemented
to speed-up 1O operations of our prototype.

6.3.4.1.1 Memory Region allocation cache

We identify that issuing an allocation request on a remote node on the critical
path is an expensive operation bottlenecked by the page allocator on the memory
node. Thus, we create two memory region allocation caches.

The first allocation cache may be shared by multiple VMs and it is located in
the hypervisor module. The second allocation cache is bound to a single VM and is
located in the guest kernel module.

The cache is implemented as a basic fixed-size queue protected by a spinlock.
Each time a kernel thread performing a swap IO operation finds an UNMAPPED
memory region, it will perform an allocation request by first query a cache of avail-
able memory regions. If the cache is full, then it can return the memory region to
the guest and asynchronously issue an allocation request to the memory node. If
the cache is empty, then it issues a direct allocation request to the memory node.

Upon freeing, the cache is simply refilled by appending memory region to the
cache until it is full. When the cache is full, free operations are forwarded to the
memory node for actual freeing of memory regions.
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6.3.4.1.2 Batching

We observe that during process termination in the VM, it is common that mul-
tiple discard operation are issued on the swap device. This leads to the freeing of
multiple memory regions and result in lots of messages being conveyed on the fabric.
We implement a support to batch free operations by aggregating them in a single
message to limit the number of round trips.

Regarding allocation requests, our current implementation supports caching of
allocation operations but it does not support batching (i.e. aggregation in a single
message). We do not support this feature as the existing caching layers prevent
allocations to be delivered on the critical path in many cases. The other reason
why we don’t batch allocation requests is that it is not possible to perform each
allocation in the batch concurrently. In particular, it is expected that Linux page
allocator would not scale well to satisfy multiple concurrent allocations as various
structure are protected by locks.

6.3.4.2 Configurable parameters

There are actually various parameters which can impact the average latency of
each request. We have evaluated the following factor of influence:

1. the use of the official Mellanox infiniband verbs (named OFED) against the
kernel implementation (kernel verbs)

2. the use of hardware [IOMMU
3. the use of request merging
4. the allocation policy of hardware queues on queue pairs

We have observed that the use of hardware IOMMU or Mellanox OFED has
little impact on the average latency. However, request merging, hardware queue on
queue pair allocation policy and IO policy has real impact on the performances.

6.3.4.2.1 Allocation of hardware queues on queue pairs

One of the potential factor of performance variation is proper matching of guest
block device hardware queues with virtqueues and RDMA hardware queue pairs.

Linux blk-mq system was proposed to support multi-queue devices (e.g. NVMe
devices). This system proposes two level of queues: software queues and hardware
queues. Depending on driver implementations, 10 requests (bios) may either be
submitted to the Linux block layer or bypass it to be directly handed to the device
driver implementation. In ODswap, we interface with Linux block layer (blk-mq)
which means that ODswap requests have previously been treated by the block layer.
IO requests are first enqueued in per-CPU software queues (blk_mq_submit_bio())
by the submitting thread (swapper). Then, Linux performs different optimizations
on 10 requests such as request merging, or 10 scheduling. Then, Linux block layer
asynchronously fetches requests from software queues and sink them to one or mul-
tiple associated hardware queues. Hardware queues are managed by the block layer,
however it is the responsibility of the device driver to determine how many hardware
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Figure 6.4: blk-mq software and hardware queues and RDMA queue pairs

queues should be created and how they are mapped with software queues and device
hardware queues. Finally, the 10 request is delivered to the block driver layer
(e.g. SCSI) (queue_rq(), which is where ODswap interfaces. RDMA queue pairs are
different from blk-mq hardware context queues. RDMA queues pairs are located on
the RNIC and managed by the device driver.

In this micro-evaluation of an early version of our prototype, we evaluate three
different configurations summarized in Figure [6.4] in a multi-thread kmeans appli-
cation.

e IHWQ/1QP is a configuration where a single hardware queue and queue pair
are created for 16 CPUs;

e I6HWQ/1QP is a configuration where 16 hardware queues are created for a
single queue pair;

e I6HWQ/16QP is a configuration where 16 hardware queues are created for
the block device while only 16 for the queue pairs.

Results are presented in Figure 6.5

In Figure [6.5, we can see that for a single thread, all configurations perform at
similar latencies. However, when the number of concurrent threads grows, average
read and write latency is much higher for ITHWQ/1QP, a bit more for I6HWQ/1QP
and the lowest is achieved for 16HWQ/16QP. This shows that dedicated hardware
queues and queue pairs enable better performances when using concurrent applica-
tions.

6.3.4.2.2 request merging

Another potential factor of performance variation is caused by relying on Request
merging or not. Linux commonly relies on a service named IO scheduler to perform
request management by merging or reordering requests. IO schedulers is a very
useful component for serial and high-latency backend such as HDD. With the advent
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Figure 6.5: Allocation of hardware queues on queue pairs

of flash drives, IO scheduler are less commonly used, and it is common to see flash
drive rely on the noop scheduler which does not reorder requests. The noop scheduler
almost provides FIFO ordering of requests with a few corner cases breaking FIFO
ordering.

In our case, we focus on request merging which is a service offered by IO sched-
ulers to aggregate together multiple bios. In multi-queue versions of the block layer,
requests are enqueued on per-CPU software queues (struct blk_mq_ctx) protected
by a spinlock. However, it may be interesting to merge requests together to reduce
seek time on rotational drives or to avoid interrupt overheads for modern drives.
Thus, in Linux v5.11.1, requests can be merged first in plug queue or through bio
merging using request queue.

Plug merging tries to merge requests in the same request queue by holding re-
quests during a short duration before finally flushing the plug (blk_flush plug())
usually during kthread pre-emption through a call to schedule().

Bio merging requires taking the software queue spinlock before checking previous
8 requests in the request queue and tries to merge their bios either before or after
the current request if sectors backing from the request and the bio can form a single
request on a contiguous set of sectors.

In Figure [6.6] we test our bock device for two configurations: request merging
enabled or disabled. We measure average read/write latency for block device 10s
and we test different levels of concurrency in a kmeans application.

We can observe that enabling request merging causes read latency to double for
low number of threads, but the difference soon becomes steady when the number
of threads is greater than 6. Concerning average write latency, for low number of
threads the latency is ten times bigger and performance difference remains higher
for request merging but less significant for more than 6 threads. We observe that
merging requests together adds additional latency overhead to each IO especially
to write requests. However, aggregating requests yields higher request throughput
but it has been shown that some applications may suffer worse of throughput
degradation while others would suffer more from latency degradation. Thus, request
merging is an important factor of performance variation with application specific
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selection required for optimal performances. In ODswap, we have chosen to activate
request merging.
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Figure 6.6: Request merging

6.3.4.2.3 10 policies

The way the kernel issues I/O management differs a lot depending on the back-
end technology. Linux allows device driver developer to register the appropriate
configuration for the backend used. One of such configuration is the selection of the
backend as being either rotational or non-rotational.

On one hand, rotational drives such as HDD implement sequential 1/O patterns
since these drives use single head seek on a rotating disk to issue read or write
operations.

On the other hand, flash drives usually support concurrent 1/O operations, thus,
it relies on per-cpu index for sector allocation to achieve better allocation parallelism
thanks to partitioning of sector space.

In Figure we have evaluated how the influence of 10 policy on the execution
time of a single-threaded kmeans application. We enforce with the help of memory
cgroup different level of local memory based on the application resident set size. We
can see that the non-rotational policy offers more than twice shorter execution time
than rotational policy. As expected, the higher parallelism of non-rotational policy
offers better performance gains.
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Figure 6.7: Influence of IO policy (rotational vs non-rotational) on wall clock
runtime in single threaded kmeans

In this section, we have presented the details of the implementation of ODswap,
our solution to perform transparent remote memory accesses in a virtual machine.
Despite RDMA offering access to remote memory, its message-passing semantics
are very different from upcoming cache-coherent interconnects which directly propose
shared memory semantics.

In the next section, we propose an evaluation of ODswap.
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6.4 Evaluation

In section we have reviewed the different challenges and solutions to im-
plement ODswap. In this section, we propose to study the performance impact of
using transparent remote memory with ODswap. First, we try to assess perform
degradation in various applications based on the amount of remote memory used
over the total amount of memory normally required. Second, we try to determine
how application performance degradation can be modelled with hypervisor knowledge
to help VM scheduling issue relevant placing to limit performance impact. Third,
we compare ODswap with other comparable prototypes which can be used in VMs to
access remote memory. Fourth, we try to determine the performance of application
in DSM-VMs architectures (§5.7.9) and memory pooling architectures (§5.7.5) to
determine potential limits and advantages in each architecture. Fifth, we try to as-
sess how ODswap helps to handle sudden memory usage in VMs compared to other
solutions. This evaluation tries to understand if swap-based prototypes are a good
fit to implement elasticity in VMs with low response time while maintaining good
application performances.

Across the following sections, we run the applications described in Table [6.2]
This table presents the different applications based on the number of threads used
by the application and the average resident set size value we have measured for each
application.

’ Application \ #threads \ AppRSS \ Description ‘
quicksort 1 8 GiB C++ quicksort on integers
k-means 16 8 GiB Python scikit [117] k-means
pagerank 16 8.6 GiB Spark [168] GraphX pagerank

on wikipedia categories subgraph
Alternating Least 16 21.2 GiB | Spark [168] ML recommendation
Square (ALS) algorithm on MovieLens dataset

Table 6.2: Summary of applications used in our evaluation

6.4.1 Disaggregation profiles

We present per-application disaggregation profiles which enables to track the
impact of performance degradation. The study of such profiles is not new and has
already been conducted by Gao et al. [57], Fastswap [7] and Infiniswap [61]. Disag-
gregation profiles offer interesting simulation perspectives, and they have been used
by Gao et al. [57)] to forecast the performance degradation of applications with remote
memory. Moreover, these profiles can be used, as in Fastswap |7/, to propose con-
tainer scheduling policies which try to balance performance degradation and resource
usage based on these profiles. In the following section, we plot the disaggregation
ratio for a set of applications using ODswap.

Description. In this experiment, we try to plot, for each application, the perfor-
mance degradation of applications for different local memory ratio (i.e. ratio of local
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memory usage over application resident set size). Local memory ratio is modified
across runs by changing VM memory size to the desired local memory ratio based
on the measured average resident set size of each application. In our experiment, we
try to enforce an intended memory ratio in guest applications comprised between
0.5 and 1 with increments of 0.1. We have observed that there exists a difference
between the measured local memory ratio of a guest application and the intended
memory ratio. In our plots, local memory ratio always refer to the measured local
memory ratio. We refer to the plots obtained as disaggregation profiles.

Application details. quicksort performs multiple runs through integer ranges
with uniform page access frequencies meaning that the working set of pages is
roughly equivalent to the resident set of pages.

ALS runs a matrix factorization algorithm on MovieLens dataset which is bot-
tlenecked by 10 operations (load/writeback) on dataset pages.

pagerank runs pagerank algorithm implemented in Apache GraphX library on
wikipedia category graph. Pagerank measures the importance of each vertex in
a weighted graph by running a graph walk through all vertices in the graph and
update their state until it reaches a stationary configuration. Thus, the access
pattern depends on the underlying graph and in the case of Wikipedia graph, some
nodes will be hotter than others with clusters vertices which will have higher access
frequencies. Additionally to the application pattern, pagerank is a Java application
and runs in a Java virtual machine, which regularly runs a garbage collector. In
pagerank, we have observed around 170 such garbage collection phases (with G1
algorithm). Since garbage collector are known to have poor locality mostly caused
by heap walk, we could expect high performance degradation even with a small local
memory ratio.

kmeans run Elkan algorithm [48] for kmeans and iterates through uniform ranges
of objects in memory. We have observed large allocations and expensive zeroing to
initialize the lower bounds used to represent the distance nodes and all centroids.
Similarly to java (described for pagerank), python uses a garbage collector which
could also degrade performances. Internally, python uses a generational garbage
collector which rely on three generations of objects: newly created objects, first-
cleaning survivors, second-cleaning survivors. We have observed in kmeans 176
collections in first generation, 15 in second generation and 1 in last generation.

© -
£ 207 + quicksort
SO kmeans
+= O
o =
25 10- pagera.nk
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Figure 6.8: Disaggregation profiles of different applications
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Observation. Figure shows that pagerank suffers steady little performance
degradation with execution time never bigger than twice the optimal configuration.
ALS-MLLib has no performance degradation when more than 85% of application
memory is local but execution time is twice longer when the portion of local memory
is comprised between 85% and 50%. quicksort disaggregation profile has a similar
curve shape than ALS with no performance degradation when performances with
95% local memory and a steady 2.5 overhead between 50% and 95%. kmeans dis-
aggregation profile first shows no performance degradation when local memory is
higher than 85% and a very high execution time overhead which goes from 7 at 75%
of local memory to 10 for 55% local memory ratio.

Interpretation. In this experiment, we have identified that each application has
different memory access patterns (e.g. sequential or random) with different access
frequency for each page (e.g. uniform accesses or limited working set). Generally,
when the working set (the set of frequently accessed pages) does not fit in local mem-
ory, application performances quickly degrades. However, frequency of page accesses
remains very relative as some applications may have a rather uniform frequency of
page accesses.

In this evaluation, we have shown that applications exhibit very different perfor-
mance variations depending on the amount of memory maintained locally. Disag-
gregation profiles are important figures for VM scheduling since they directly exhibit
the trade-off between application performances and resource usage.

Disaggregation profiles have been used in previous works. In particular, Gao et
al. [57] have studied the impact of latency and throughput on disaggregation profiles
to determine general acceptable latency and throughput values for remote memory
accesses. However, disaggregation profiles are mostly relevant in a context where
customers may report to the execution platform the job it is going to execute. Next
section discusses blind performance degradation for efficient VM scheduling.

6.4.2 Comparison with other backends

Existing storage disaggregation prototypes can also be used as swap backends to
extend VM local memory. Storage disaggregation prototypes are production-ready
with strong engineering efforts, open-source implementations and no unexpected be-
haviours. In this section, we try to compare how these prototypes perform compared
to ODswap.

6.4.2.0.1 Description. In this experiment, we try to determine the performance
of our prototype using different cloud applications for various backends. In partic-
ular, we compare ODswap with:

1. INVME: a local NVMe drive exposed in PCle passthrough with vFIO
2. rRAM: a remote ramdisk that is accessed through the NVMeoF protocol
3. rNVMe: aremote NVMe drive that is accessed through the NVMeoF protocol
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In each backend and for all applications, we run the VMs with 50% of the average
resident set size as local memory and the rest as remote memory accessed through
swap. For example, in quicksort application, the VM executes with 4 GiB of local
memory and 4 GiB of remote memory. For each application, we compute an average
execution time when the VM is overprovisionned in memory which corresponds to a
setting where local memory ratio is above 100%. We report the normalized execution
time of the applications on each backend.
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Figure 6.9: Disaggregation profiles of various applications
Observation. In Figure [6.9) we can observe that for each application ODswap

outperforms all the other prototypes. INVMe and rRAM backends exhibit compa-
rable execution time. However, the INVME backend leads to very long execution
time which can be up to 10 times slower (kmeans). Furthermore, we can see that
performance degradation for similar usage of local memory changes significantly
across applications with 10 times slower execution for kmeans with ODswap and 1.5
times slow down for ALS-MLIib with the same backend.

Interpretation. First, it is important to note that ODswap compares with the
advantages of TNVMe and rRAM which permits remote accesses to a storage or
memory backend while INVMe on the contrary can only support accesses to a local
storage NVMe drive. Second, ODswap achieves significant acceleration for different
applications compared to other implementation. We identify that ODswap accel-
eration is caused by the use of one-sided RDMA with coarse-grained allocations.
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Indeed, rRAM and rNVMe rely on NVMeOF which internally uses fine-grained re-
mote backend allocations by using RDMA two-sided messages and perform the 10
using one-sided operations. This causes a RDMA RPC to be issued for each 10
operation while ODswap only requires a RDMA RPC for the allocation of a new
memory region.

In this section, we have presented the performance advantages of using ODswap
other concurrent alternatives. We have noted differences in performance degradation
for a same backend depending on the application in-use. Thus, in next section we
study in more details the evolution of application performances depending on the
local memory usage.

6.4.3 Comparing DSM VMs and disaggregated VMs

In section we have discussed the different architectures which use remote
memory accesses to improve packability of VMs in a rack. In this section, we propose
to review the performance impact of distributed VM architectures (see details in
and VMs performing remote memory accesses through a writeback cache
layer (ODswap). We review why the prototypes offer similar approaches and can
be fairly compared together before presenting the advantages and drawbacks of each
architectures.

Description. In this experiment, we try to run a fair comparison of the perfor-
mance of applications between a DSM-VM executing on two servers and a disag-
gregated VM. DSM-VMs offer better perspective of resource usage since it enables
to use remote processing units, not just remote memory. We study performance
degradation with the number of threads to exhibit the limits of DSM-VMs with con-
tention. In order to have a fair comparison we compare applications using ODswap
with 7" threads while the DSM-VMs use T threads on each server (i.e. T + T).
Indeed, this thread configuration offers a similar complexity for the VM scheduler
since finding 7" unallocated CPUs on a single server is always simpler than GiantVM
configuration which requires the VM scheduler to find two server with 7" unallocated
CPUs. In ODswap, we select a local memory ratio of 50 %. We present our results

in Figure [6.10]

Observation. First, in Figure [6.10, we observe similar performance degradation
between ODswap and GiantVM on the single threaded quicksort application. How-
ever, execution of the quicksort with an unmodified VM is twice faster than for
ODswap and giantVM.

Second, for kmeans, we observe that giantVM outperforms ODswap by a factor
of two.

Third, for ALS, we observe similar execution time in ODswap and in baseline
around 1000 s while giantVM is 15 times slower with 15, 000s to execute.

Fourth, for pagerank, we observe that ODswap execution time is close to the
baseline, however, giantVM execution time is between 4 to 6 times slower.
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Figure 6.10: Comparison of various application execution time on GiantVM and
ODswap with the number of threads

Interpretation. Both DSM-VMs and ODswap have similar latencies to fetch a
page from a remote node. However, in DSM-VMs, CPUs from different nodes access
a shared memory layer which aggregates memory of each node. Thus, DSM-VMs
implement hypervisor-level cache coherency protocol which can be expensive in ap-
plications heavily sharing memory as in pagerank and ALS which run garbage collec-
tion algorithms. BLABLA * Both DSM-VMs and odswap have similar latencies to
fetch a page from a remote node. However, in DSM-VMs, CPUs from different nodes
access a shared memory layer which aggregates memory of each node. Thus, DSM-
VMs implement hypervisor-level cache coherency protocol which is expensive. - il
faut ajouter ”parfois meilleur, parfois pire, ¢ca dépend du pattern d’acces mémoire
: pour kmeans, peu de partage entre thread =; deux fois plus de threads permet
a giant-vim d’étre meilleurs, pour ALS et pagerank, beaucoup d’acces aux mémes
pages a partir des threads sur différentes machines =; odswap est meilleur”

This section has proposed an architectural comparison of far memory accesses
between distributed shared memory (DSM) and disaggregated memory. While some
applications perform better on DSM-VMs, the cost of software cache coherency in
the DSM can be extreme for some workloads (up to 15 times slower). Based on these
observations, we pretend that disaggregated memory architectures in VMs are more
relevant for many workloads than distributed memory architectures.

One of the other use case which motivated our work with ODswap s the goal to
absorb peak usage of memory in a VM without termination of the VM. In
we describe our experiment showing the behavior of ODswap when memory resource
become scarce in the VM.
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6.4.4 Handling peak usage

We have seen in section that resource usage in a VM is unpredictable and
this makes adaptation of resource provisioning complex. We have seen that this
leads to user statically provisioning their instance for the worst resource consumption
scenario. One of the possible solution offered by ODswap to limit overprovisioning
s to access remote memory resources which where unallocated at VM start time.

In this section, we study the performance impact of ODswap and concurrent
prototypes to use resources at execution time. In this study, we consider two dif-
ferent scenarios. The first scenario is a smooth memory increase which simulates
an increasing memory consumption in a VM which grows higher than the memory
resources initially provisioned. The second scenario considers a sudden memory in-
crease in the hypervisor. Such a scenario is a typical representation of the allocation
of a new VM on the same hypervisor.

In both scenario, we try to simulate mechanisms available to cloud providers to
mcrease memory usage in addition with devices support remote memory accesses.
We run VMs with a balloon driver to support lending unused memory across VMs.
We also monitor if applications experience memory shortage by monitoring the num-
ber of page fault per time unit (page fault rate). When memory becomes scarce, both
i the VM and in the hypervisor, we initiate a live migration to another machine to
support execution of the VM with its entire memory capacity.

6.4.4.1 Smooth increase in memory usage.
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Figure 6.11: Smooth spike in memory usage in YCSB-load/Redis

Description. In Figure [6.11]a, we simulate a smooth increase in memory usage.
On a machine with 48 GiB of memory, we start Redis in a VM with 32 GiB of
memory, while another VM already consumes 32 GiB and runs stress-ng. In order
to simulate scarce memory for the Redis VM, we load a balloon driver in the Redis
VM but not in the stress-ng VM. After the boot of the Redis VM, we start the YCSB
load phase on another machine, which smoothly increases the memory pressure of
the Redis VM as new keys are added. Our benchmarking script also implement
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a method used in some VM orchestration framework to detect when VM memory
becomes rare. We rely on a threshold method which initiate the migration of the
VM when the page fault rate grows higher than a limit.

Observation. At 75s, ODswap starts to ofload memory. During this phase, the
throughput decreases from 12k to 6kops/s. At 150s, ODswap migrates the VM
because the page fault rate reaches the threshold (first vertical bar). After the
migration (second vertical bar), the throughput reaches its maximum in 50s. We
observe that the performance degradation remains decent (minimum of 6kops/s)
despite the stop-the-world phase caused by migration. This result shows that, thanks
to ODswap, we can aggressively use memory overcommitment to pack more VMs
on the same physical machine: the performance of the VM remains acceptable, even
if the host runs out of memory.

NVMeofRAM behaves almost like ODswap, except its throughput collapses (min-
imum of lkops/s). Moreover, NVMeofRAM consumes 32 GiB of local and 32 GiB
of remote memory, which makes the comparison with ODswap unfair since ODswap
consumes at most 32 GiB in total. With NVMeofNVMe, the throughput collapses
(minimum of 1.5kops/s) and remains lower than 6kops/s during roughly 50s.

Interpretation. While storage techniques (NVMeofRAM and NVMeofNVMe)
makes the VM unusable with YCSB throughput reduced to 13% of peak throughput,
ODswap is able to limit performance degradation and maintains execution around
50% of peak throughput.

6.4.4.2 Sudden increase in memory usage
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Figure 6.12: Sudden spike in memory usage in YCSB-A /Redis

Description. In Figure [6.11]b, we simulate a sudden spike in memory usage. We
report the throughput of the run phase of YCSB-A (50% read, 50% update) in a
VM of 32 GiB that executes Redis. At the beginning of the run (up to 200s), Redis
runs alone and uses the 32 GiB.
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We simulate a sudden spike in another VM, which leads to instantaneous loss of
8 GiB in the Redis VM at 200s. At that time, the VM offloads immediately 8 GiB on
machine M. Taking 8 GiB from a VM is unlikely in production, except if we imagine
a Spot VM scenario. Spot VMs are VMs without service level agreement that can
be killed if a non-spot VM needs resources (see section . With ODswap, instead
of killing the Spot VM, we can reclaim its memory and use the page fault rate to
determine if the VM should be migrated.

Observation. When the VM loses its memory, ODswap throughput decreases
quickly to 5kops/s because of intensive memory offloading. NVMeofRAM and
NVMeofNVMe throughput drops to around 1 kops/s when memory becomes scarce.
Then, the hypervisor detects that the page fault rate reaches the threshold and our
benchmarking program triggers the migration of the VM.

When the VM restarts on machine B, since ODswap uses a prepost algorithm
(see §5.4.6.1), the VM is slowed down for two reasons: (i) the post copy phase
of Qemu loads the pages that are not yet migrated from machine A, and (ii) the
memory offloader of ODswap swaps in the offloaded pages from machine M. We
observe that ODswap recovers its initial throughput of 20kops/s after 350s, against
2250s for NVMeofNVMe and 950s for NVMeofRAM.

Interpretation. Overall, this experiment shows that application running on ODswap
remains usable almost all the time (throughput higher than 5kops/s), while this is
not the case with NVMeofNVMe. This result shows that disaggregated VMs are

a promising technique to implement spot VMs. With ODswap, spot VMs remain
responsive, and they are not killed when another VM consumes the hardware re-
sources.

In this section, we have performed evaluation on a set of application for different
configurations. We have shown that each application suffer different performance
penalty and we have characterized this degradation using disaggregation profiles.
Then, we have compared ODswap with different backends and notably backends which
are used to support storage disaggregation. Next, we have reviewed the differences
between DSM-VMs and disaggregated VMs for different applications and we have
shown that disaggregation offers advantages for some applications by saving cache
coherency messages. Finally, we have studied how ODswap reacts to peak memory
usage with smooth demand and sudden demand.
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6.4. EVALUATION

This chapter introduces our first prototype, ODswap, a system to transparently
let applications running in VMs use remote memory. ODswap directly leverage the
swap interface of the guest OS to sink 10s in paravirtualization queues treated by an
in-kernel middleware to convert them to RDMA operations on remote memory.

In details, our main contributions compared to existing prototypes are the follow-
mg.

First, our proposal is designed to support transparent remote memory accesses
for VMs efficiently. In particular, we avoid the problem of uncollaborative swap-
ping (see if remote memory accesses were performed through hypervisor-level
swWapping.

Second, we implement a paravirtualization server in the host kernel to avoid
privilege level changes and PCle DMA address translations.

Third, we noticed that multiple prototypes actually reserve large static partitions
of remote memory with expensive cost on remote server. We propose an alternative
approach to concurrent prototypes swapping on entirely pinned remote memory parti-
tions. In ODswap approach, remote memory is allocated on-demand and invalidated
after being used.

During the evaluation phase of this prototype, we have observed large perfor-
mance degradation in many applications for remote memory accesses using a swap
device even for ODswap. Indeed, we have measured that remote memory accesses
with ODswap for 4 kiB pages are much longer (approx. 30 p s) than raw RDMA
accesses at the same granularity (approx. 2 p s). Concurrently to this work, vari-
ous papers (125, |103, 28] have reviewed the various reasons behind the overhead of
swap-based techniques (see . RDMA remains a viable solution to support dis-
aggregated memory in language runtimes (155, |125] and databases [27]. However,
recent prototypes [104), 195] rather prely on existing NUMA machines to simulate
remote memory accesses on a cache coherent interconnect such as CXL.

Based on these lessons, we have tried to move away from systematic page fault
handling techniques for the design of our mext contribution. Additionally, the re-
view of concurrent prototypes supporting memory overcommitment of virtual ma-
chines has drawn our attention towards other interesting challenges which should be
addressed for memory disaggregation support. Next chapter proposes a discussion
around our observation and our current proposal.
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Motivating hypervisor and VM co-design

In the previous chapter, we have reviewed the main problems and contributions
identified in the literature to manage heterogeneous memory systems and to manage
virtual machines with dynamic resource usage. In this chapter we focus on the iden-
tification of main limits to existing VM memory tiering systems and VM memory
adaptation.

Notably, in section we have pointed out studies which show that virtual
machines resource usage changes unpredictably over time. We have reviewed some
of the solution proposed in the literature to adapt VM memory at runtime. Thus, the
first section of this chapter proposes an in-depth review of production-ready systems
to dynamically adapt VM resources with an emphasis on response time.

A common pattern reported in multiple works presented in section 15 the
information loss across the various layers of memory management known as the
semantic gap.

In we have discussed how the semantic gap between language and kernel
leads to I0 amplification caused by a mismatch between object size granularity
at language level and page size granularity at kernel level. This has already been
widely studied in the context of remote memory accesses by AIFM [125]. In this
chapter, we rather focus on studying hypervisor level semantic gaps in exist-
ing tiered systems and upcoming tiering systems like CXL. We focus on the study
of performance degradation introduced by virtualization to access remote memory.
First, we focus on page metadata information loss (dirtiness, file-backed or anony-
mous mappings) between guest OS and hypervisor in tiered-memory VMs. Ezisting
work have reported how this information may lead to uncooperative swapping (8]
scenarios illustrated by hypervisor swapping. Then, we study another known hyper-
wisor semantic gap which is topology exposition. Lack of hardware informations
(memory throughput, memory latency) at guest level can lead to suboptimal page
placement. We also conduct a review of performance degradation when resorting to
hypervisor level page placement.
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7.1. MEMORY OVERCOMMITMENT TECHNIQUES

7.1 Memory overcommitment techniques

As seen previously, a key motivation for datacenters is to run more VMs on fewer
servers. One of the solution is to support memory overcommitment, a situation
where the sum of allocated VMs memory is bigger than the server memory. However,
achieving memory overcommitment with low impact on system performances is hard
especially when all VMs require memory at the same time. One of the problem
memory overcommitment is the lack of a fast abstraction to grow and shrink VMs
memory resources dynamically.

Traditionally, the hypervisor has mostly considered VMs as static instances using
boot-time memory limits. Interestingly, the use of boot-time limits in VMs is not
imposed by the hypervisor. It is rather imposed by a static guest OS memory man-
agement which struggles to give back resources when it uses them. Moreover, this
boot-time provisioning combined with the unpredictability of resource consumption in
VMs (section leads users to over-provision their VMs for future peak resource
usage.

In this section we study the performance of existing solutions to dynamic memory
usage in VMs. These dynamic solutions either proposes to lend part of their boot-
time allocated memory to another guest (ballooning) or to rely on the ability of the
guest OS to add physical memory resources (memory hotplug) at the cost of expensive
and sometimes infeasible defragmentation operation. Moreover, most solutions are
managed by the hypervisor which requires monitoring resource usage before issuing
configuration changes in feedback control systems with low reactivity. In this section,
we propose a detailed analysis of time-contributions for the most common memory
mechanisms to run dynamic VMs.

7.1.1 Memory Ballooning

Memory ballooning [155] is a technique introduced with first SMP hypervisors
which proposes a solution to dynamically change VM size. virtio-balloon (147 is the
standard ballooning driver supported by multiple hypervisors. It relies on virtio trans-
port protocol [147] implemented over PCle or MMIO for communications between
guest and host. virtio-balloon is only a mechanism for reservation of memory in the
guest. It does not implement policies regarding when memory should be reserved or
how much should be saved. The implementation of policies is left to an hypervisor
component known as auto-ballooning which performs calls to the hypervisor side of
the balloon API.

The balloon API is the following:

//Grow balloon by size i.e. shrink VM usable memory by size
void inflate (size_t size)

//Shrink balloon by size i.e. grow VM usable memory by size
void deflate(size_t size)

//Report current balloon size
size_t get_balloon_size (void)
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7.1.1.1 Known performance issues of classic memory ballooning

Recent studies |66} |67] have reported multiple major problems in the implemen-
tation and design of memory ballooning such as lack of NUMA awareness and lack
of Huge Page support. Such limitations include design or implementation limits
caused by the dependency on Linux page allocator for balloon inflation. Indeed,
virtio-balloon inflation does not take into account vNUMA topology and consider
uniform guest topology. In some cases, it may result in VMs performing remote
mMemory accesses.

Second, it relies on page allocator which works at 4 kiB as a default granularity
and may fail to perform transparent huge page allocation of 2 MiB or 1 GiB.

Existing reviews focus on application performance following ballooning com-
mands however one of the limits to dynamically changing VM memory remains
mechanism speed. Thus, we propose in this section a review of bottlenecks in virtio-
balloon with a focus on the speed of each command of this mechanism.

7.1.1.2 Memory ballooning speed

We begin our study of memory ballooning with an evaluation of the speed of VM
memory capacity growth and shrink. Indeed, modifying dynamically VM capacity
is harder when changes are slow as these changes will cause longer execution of guest
application with low resource capacity.

T:’ 3004 [ Inflate Total -
£ 200 XXI Inflate Host
o Deflate Total o o
2 1004 EEH Deflate Host [
S
U ol o o
2 0- 1 ° — ° ] — °° (O]
L I | |
8.0 16.0 32.0 64.0
VM size (GB)

Figure 7.1: inflate and deflate time

Description. In Figure (7.1} we start a 16 vCPUs virtual machine running Linux
kernel 5.11.1 with a maximum memory capacity of 8, 16, 32, 64 GiB. The virtual
machine begins with an empty balloon letting the guest with 8, 16, 32, 64 GiB
of available memory. The experiment is made of two steps: First, we perform a
balloon inflation of 5, 13, 29, 61 GiB letting 3 GiB of usable guest memory. Second,
we perform a balloon deflation of 5, 13, 29, 61 GiB to let the guest run with 64 of
memory again.

Observation. Figure reports the execution time as a function of virtual ma-
chine size (in GiB). We can see that the duration of the inflate operation with guest
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and host time contributions goes from 22 s for a 5 GiB shrink to 290 s for a 61 GiB
shrink. The total duration of the deflate operation goes from 3 s for 5 GiB memory
increase to 35 s for 61 GiB capacity increase.

Interpretation. First, we can directly infer than both inflate and deflate delays
grow linearly with the size of memory change. Second, for all sizes, inflate operation,
which shrinks VM memory capacity, is longer than the deflate operation. Finally,
from this experiment, we directly observe long delays for simple capacity changes in
an unstressed guest. These long delays are to slow to absorb spike memory usage and
will trigger memory reclamation in the guest. The delays reported in this experiment
are lower bound and can be even longer if guest CPU time must be shared between
applications, memory reclamation operations and memory ballooning.

7.1.1.3 Analysis of bottlenecks

Figure [7][] and Figure [9] reports CPU time contribution of qemu after issuing
respectively inflate and deflate request of 61 GiB in a 64 GiB VM.

For each command we collect traces of CPU time contributions in the userspace
gemu process and KVM accelerator module, and in the guest OS.

Memory remove | Memory add

inflate deflate
Hypervisor
Host-to-guest request 9.3 % 20.7 %
EPT violation & MMIO emulation 18.6 % 3.5 %
madvise DONT_NEED 31.2 % None
— TLB shootdown — 10.2 %
— MMU notifier — 10.2 %
— syscall overhead — 10.8 %
madvise WILL_NEED None 19.6 %
— syscall overhead — 14.8 %
— Page Walk, swapin — 4.8 %
others (function calls, 25.7 % 39.2 %
privilege changes)
Guest
Guest-to-host request 8 % 15.4 %
— MMIO write — 2.77 % — 7.3 %
— notification —5.0% —81%
allocation 7.1 % 0
freeing 0 1.4 %

| Total (number of CPU cycles) | 339 783 248 027 | 126 548 509 066 |

Table 7.1: Overall time contributions for virtio-balloon

LAll icycle graphs are provided in the appendices for the sake of clarity
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In Table [7.1] we provide a summary of the time contribution of each sub-
mechanism involved in the processing of the command either from hypervisor point
of view or guest point of view. The details of the time contribution of memory bal-
looning are presented in chapter[8.3.2.1] The details of the communications overhead
between guest and hypervisors are not presented in the table, however, we have ob-
served multiple round-trips between the guest and the host to perform inflate and
deflate operations. In our experiment we have observed that a request to modify
(grow/shrink) VM size by £61 GiB issues 62,464 MMIO writes and notifications.
This large number of round-trips explains the heavy cost in MMIO writes.

7.1.1.4 Automatic Ballooning: Feedback Control Overhead

Previous sections on memory ballooning only illustrates the problems of this
technique as an isolated mechanism. In this section, we review the additional over-
heads introduced by feedback control.

PVE [119] automatic ballooning algorithm is a closed-loop feedback control al-
gorithm. It defines host used memory as a process variable ] and VM memory
capacity as a set point E] The algorithm tries to maintain host used memory to
80% of host total memory to prevent the activation of reclamation mechanisms at
hypervisor level. The algorithm acts on VM balloon size to shrink or grow usable
memory per VM to balance between satisfying the two constraints:

C1 : Vt,usedpost(t) < 0.8 X mazpos (7.1)
C2:Vt, Z curry p(t) = mm(z maxy s, 0.8mazp,s) (7.2)
VM VM
where: wused = Currently used memory in the VM
curr(t) = Current size of a VM at time t
maxr = Maximum memory size of a VM

In the following experiment, we try to understand how much overhead feedback
control adds to the existing delays of memory ballooning.

Description By default, PVE uses a sampling rate At of 10s with maximum
variation AM on the set point of 100 MiB. In Figure we configure automatic
ballooning algorithm to use different value of At and AM. We start the experiment
by inflating the balloon in a VM i.e. by shrinking its available memory so that
the VM is left with 8 GiB of memory out of its maximum of 32 GiB of memory.
Then, we activate the PVE automatic ballooning algorithm, and we report for each
different value the time taken by the automatic ballooning algorithm to converge
towards its stable state where the VM is left with 32 GiB of memory.

?measured value in control theory
3configurable parameter in control theory
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Observation For PVE default automatic ballooning values (At = 10s and AM =
100MiB), we can observe that the algorithm is not able to reach its stable state.
As shown in Figure [7.2] for more aggressive values with At — 0 and AM >> 1,
the response time is much shorter and ends up being limited by ballooning speed
evaluated earlier. Moreover, when we perform monitoring of CPU usage during the
execution of the control loop algorithm, we observe that the control loop program
does not impose a large overhead on CPU consumption however one of the cores
running the VM is consuming 100% CPU cycles.

Interpretation This experiment presents the additional time contributions intro-
duced by feedback control algorithms for automatic changes in VM memory capac-
ities. There exists in control theory a known trade-off between accuracy and speed.
This result states that increasing control frequency causes, on one hand, faster re-
sponse time but, on the other, it is also responsible for lower accuracy to determine
the desired memory of the guest. This is caused by aggregating sampled data in a
tight time interval for decision-making which may fail to capture overall tendency of
a change. Moreover, any misprediction by feedback control of the guest behaviour
will generate undesired CPU usage in guests which hurts the performance of user
workloads.

@407 At=1s  At=1s  At=1s At=10s
® 35| AM=4GiB AM=2GiB AM=1GiB AM=2GiB
5,30
825
€20
g15 At=10s
<10 AM=100MiB
5
0

Actu

0 20 40 60 80 100 120 140
Time (s)

Figure 7.2: Reactivity of Proxmox auto-ballooning algorithm in a scenario requiring
deflation

7.1.2 Free-page-reporting: A guest-initiated technique

Free page reporting (FPR) [158] is a recent paravirtualization feature introduced
to achieve convergence of quest OS used memory and hypervisor used memory.

7.1.2.1 Free-page-reporting, guest-driven hypervisor page freeing

Free page reporting is added to virtio-balloon on both hypervisor and guest OS
side. FPR is composed of two components: an extension to virtio-balloon paravirtu-
alization layer and a client-side implementation of page reporting mechanism. First,
FPR reuses the existing paravirtualization communication layer of virtio-balloon
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and the exposed PCle device. It adds a new dedicated communication queue iso-
lated from traditional ballooning. Second, FPR subscribes to receive freed pages
reported by a guest kernel mechanism named page reporting.

Page reporting [47] is integrated with Linux page allocator. When reported free
pages reaches page_reporting_order watermark, it enqueues in a work queue a job
to free multiple pages. The work is scheduled within 2 seconds. It issues a page
reporting cycle for each zone and for each page order comprised between 0 and 10.
The page reporting cycle first performs a fill phase to create a scatterlist of pages by
looping through buddy allocator free lists to isolate unreported free pages. Then,
it issues the report phase by calling the FPR report callback which sends pages
stored in the scatterlist over the FPR paravirtualization queue. The drain phase
removes pages from the scatterlist and reinsert them in the buddy free lists with
reported pages tagged with a new page flag (PG_Reported). This flag is used in
next iteration of the cycle to track free pages which have already been reported.
This helps to avoid reporting them multiple times.

Y

IDLE . 1 freed pages > watermark
(page freeing » REQUESTED

accounting)

) schedule reporting
reporting performed

ACTIVE
(report pages to
hypervisor)

Figure 7.3: Free page reporting global state machine

As shown in Figure FPR maintains a global instance (struct page_reporting_
dev_info) which tracks the state of the page reporting mechanism. Thus, FPR defines
three states: idle when no reporting is being done, requested and active. Initial state
is IDLE. State changes from IDLE to REQUESTED when page reporting wants
to free some pages after crossing the watermark, from REQUESTED to ACTIVE
when the reporting job is scheduled, from ACTIVE to REQUESTED when another
cycling request is made because of excessive freeing pressure while the first request is
not entirely processed. Finally, state transitions back from ACTIVE to IDLE after
pages have been reported to the hypervisor.

On hypervisor side, gemu calls madvise() with DONT_NEED flag on reported
pages to let the hypervisor OS reclaim these pages. Free-page-reporting commu-
nicates free pages to the hypervisor using a free page block. The default free page
block order is pageblock_order i.e. 2! pages meaning 4 MiB for 4 kiB pages.
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Figure 7.4: Free-page-reporting latency depending on page size

7.1.2.2 Analysis of bottlenecks

Similarly to traditional ballooning, we try to assess how quick is free-page-
reporting to perform page freeing depending on the size it tries to free. Figure |7.4]
starts a virtual machine with 8, 16, 32, 64 GiB size. Then, a memory stress job
simulated by stress-ng tool is ran during 30 s and uses 90 % of the VM allocated
memory. The 10 % leftovers are left unallocated to avoid waking up OOM process
killer. It performs anonymous memory allocation only. After termination of the
process, pages are freed, and page reporting is initiated. We start recording elapsed
time after process terminates and finish recording after the VM used memory drops
under 3 GiB.

7.1.2.2.1 Bottlenecks

On the hypervisor-side, FPR spends most of its time (97%) in zap_page_range()
following madvise(MADV_DONTNEED). However, in free-page-reporting, MMU
notifier invalidation which ensure coherence of EPT and hypervisor page table ac-
counts for 80% of the reporting time. MMU notifier invalidation time is further split
into 3.7 % for TLB flush of EPT entries on all CPUs (KVM_REQ_-TLB_FLUSH).
The other MMU notifier invalidation time is spent which accounts for 95 % is spent
in kvm_unmap_hva_range to unmap the host virtual address space ranges of re-
ported pages. The high cost of this method comes from removing entries in rmap,
a structure mapping gpa to shadow page table entries (spte).

Apart from MMU notifier invalidation, time left is spent in TLB shootdown of
the hypervisor page table (hva to hpa page table) with 13% of total reporting time.

7.1.2.3 Reactivity of free page reporting
In the following experiment, we try to determine how fast the VM used memory

(RSS) follows the actual memory consumption of processes inside the VM.

Description. In this experiment, we run a VM with 32 GiB of memory with free-
page-reporting. After 30s execution, a memory intensive job (stress-ng) is started
in the VM to consume 28 GiB of memory during 60s.
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Figure 7.5: Free page reporting reactivity

Observation. In Figure around 90s, a monitoring job in the VM observes
that pages have been freed and we can observe that the reporting process leading
to freeing pages at hypervisor level completes 30s later.

Interpretation. This experiment proves that FPR is able to successfully lower
the memory footprint of a VM by freeing its pages at hypervisor level. However,
the technique is not very fast for freeing pages as variation of 32 GiB of memory
still require 30 s to complete. Since FPR is guest-initiated, there is no additional
overhead required by hypervisor-level feedback control algorithm.

7.1.2.4 Behaviour with an IO page cache

In this section, we try to illustrate some of the design limitation of FPR for
applications heavily relying on the page cache.
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Figure 7.6: Ballooning vs. free page reporting with an 10 cache

Description. For this experiment we create a 32 GiB VM and we run an IO job
using 28 GiB of memory with 12 workers for 60 s. In FPR, we let guest OS report
unused pages while for ballooning we run an inflate command in the guest.
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Interpretation As shown in Figure [7.6] FPR is unable to reduce VM used size
contrarily to ballooning. Indeed, ballooning can trigger page reclamation mecha-
nisms while FPR is unable to perform it and will let the page cache grow.

7.1.3 Memory Hotplug

Previously, we have reviewed performance problems of memory ballooning and
feedback control algorithms for memory ballooning. Another widely used technique
to dynamically adapt a VM memory is memory hotplug. Recent works [54, |67] have
rebooted this technology for resource usage gains in the datacenter.

7.1.3.1 Transparent Memory Hotplug

Transparent memory hotplug is the historical memory hotplug technique. It
leverages ACPI to inform the guest of changes in the physical memory configuration.
It works by adding/removing DIMM to a guest with granularity of 128 MiB [66] at
least. Traditional memory hotplug is NUMA-aware. However, it usually requires
hot-unplug of memory DIMMs that have been previously plugged [67]. Traditional
memory hotplug is considered as offering limited opportunities for DIMM hot-unplug
compared to a newer approach named virtio-mem.

7.1.3.2 Paravirtualized Memory Hotplug

Paravirtualized memory hotplug or virtio-mem [67, 66, |146] is a recent paravirtu-
alized device introduced in gemu and Linux to tackle problems in memory ballooning
and legacy memory hotplug. Each virtioo-mem PCle device is seen as a contiguous
physical address space range in the guest physical address space. Upon each request
reception, a subrange is allocated out of the device range. Devices are divided into
memory blocks (e.g. 2048 kiB) which can be plugged or unplugged.

virtio-mem defines three different granularities and supports four actions. The
different granularities are:

1. big-blocks (BB) are the memory unit to hot-plug and hot-unplug memory
between the guest OS and the hypervisor;

2. Linux memory blocks or sections (MB), which are the granularity to which
memory is added to the page allocator (System RAM);

3. sub-blocks (SB), which are a logical granularity for logical plug and unplug
operations in the guest OS only.

The four supported operations are:
1. memory hotplug, which makes a new DIMM device visible to the OS;
2. memory hotunplug, which performs the reverse operation;
3. memory onlining, which adds memory to the buddy page allocator;

4. memory offlining which removes memory from the buddy page allocator.
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Memory hotplug and hotunplug operation will perform fake onlining and fake of-
flining of memory to whitelist and blacklist memory part of memory DIMMs. These
logical operations are referred to as fake-onlining and fake-offlining.

Hotplug and hotunplug operations are serialized using a mutex. A page flag
(PG _offline) is used to mark pages logically offlined.

Memory pages part of guest OS ZONE_NORMAL comes with little warranty
to be hotunplugged. In particular, unmovable pages are caused by kernel allo-
cations. Unmovable kernel memory typically includes the memory map (array of
struct page), page tables and SLAB. On the contrary, user-space processes which
mostly rely on page cache or anonymous pages rely on movable memory. Thus,
a new memory zone named ZONE_MOVABLE has been introduced as a zone for
user-space processes page allocation. Memory hot-unplug can aim for memory hot-
unplug of blocks in this MOVABLE zone. Despite the existence of movable zone,
some pages remain unmovable because of corner cases of memory management such
as userspace requiring page pinning.

However, the existence of ZONE_MOVABLE requires careful balancing of mem-
ory zones between NORMAL and MOVABLE to avoid a scenario where the ker-
nel is left with no memory for unmovable allocations. (A common ratio of MOV-
ABLE:NORMAL=4:1 is used)

Similarly to ballooning, virtio-mem requires the hypervisor to issue hotplug and
hotunplug requests. Thus, virtio-mem requires creation of virtio-mem PCle device
at boot time, bound to a NUMA node. Hypervisor can then send configuration
requests to the device to update a requested size value which

virtio-mem suffers the same problems as auto-ballooning by trying to balance
host memory resource across VMs with inherent feedback control response time.

7.1.3.3 High-level speed analysis

In this section, we try to evaluate the speed of hotplug and hotunplug mecha-
nisms under different scenarios. We test the following three configurations:

(a) No stress job is a configuration where the VM is idle from its allocation to its
termination

(b) After stress job is a configuration where the VM hotplugs memory, run a stress
job until completion and tries to unplug memory.

(¢) Concurrent stress job is a configuration where the VM concurrently tries to
unplug memory while unplugging.

In Figure [7.7, we evaluate no stress job configuration by starting a 64 GiB and
16 vCPUs VM and plug the following sizes: 8, 16, 32, 64 GiB. In no stress job
configuration, we can see that hotplug delay is negligible with a few microseconds
overhead only and thus it does not appear on the plot. However, hotunplug delays
grow linearly with the memory size removed and goes from 5s for 8 GiB to 36s for
64 GiB.

In Figure|7.8] we evaluate after stress job and concurrent stress job to determine
if memory hot-removal suffers additional overhead after an application has made
extensive usage of plugged memory. In these configurations, we start a 64 GiB and
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Figure 7.7: Hot-add/Hot-remove delays as a function of (un)plugged memory
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Figure 7.8: Hot-add/Hot-remove delays as a function of (un)plugged memory

16 vCPUS VM and run a stress job with different memory stress size ranging from 0
to 112 GiB. For stress sizes below 64 GiB, pages allocation may in theory be issued
exclusively on boottime memory. For stress sizes above 64 GiB, pages allocation will
be performed on hotplugged memory. We can see that unplug time is constant in
average for the different memory stress size.

7.1.3.4 Detailed analysis of delays

We try to determine the underlying time contributions responsible for long delays
especially for memory hotunplug which is much longer than memory hotplug.

Description. In this experiment, we start a 16 vCPUs VM with 64 GiB mem-
ory and 64 GiB hotpluggable virtio-mem memory automatically onlined to ZONE._
NORMAL. The VM thus starts with 128 GiB memory and we hot-unplug the 64
GiB of memory and monitor the time contribution of the different mechanisms. In
this profiling phase, we do not run any stress job. The details of the experiments are
presented in chapter [8.3.2.1] A summary of these results is presented in Table[7.2]
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hot-plug hot-unplug
Hypervisor Negligible
madvise 3%
EPT fault handling 95 %
— 4k page-zeroing 60%
— Huge Page zeroing 18%
— PUD splitting 2%
Hyperv. Total (number of CPU cycles) | Negligible | 12,610, 250,000
Guest
Guest-to-host request (SBM unplug) 0.36 %
Memory block removal and offlining 42 %
— Remove pages of buddy 0.3 %
— Offline device pages 3.9 %
Defragmentation (Isolate pages) 93%
— per-page kmap() in kernel 4%
— page-zeroing 89%
Guest Total (number of CPU cycles) 511,500,000 | 67,010,118, 897
Total (number of CPU cycles) 511,500,000 | 79,620, 368, 897

Table 7.2: Overall time contributions for virtio-mem

In this section we have reviewed ballooning, free-page-reporting and memory hot-
plug, the most common mechanisms used in virtualized environments to dynami-
cally change available memory resources available to the gquest. We propose a study
of configuration change speed for each mechanism, and we profile the cost of each
mechanism to examine the cause of the expensive response time.

In our study of these mechanisms, we have identified two sets of mechanisms.
The first set is hypervisor driven mechanisms i.e. mechanisms that perform
configuration changes after receiving a request from the hypervisor such as ballooning
and memory hotplug. The second set is guest driven mechanisms i.e. mechanisms
that let the guest issue proactive actions to reduce its memory footprint like free-
page-reporting. We have discussed the limits to hypervisor mechanisms which only
provide the raw mechanisms without providing the control logic. The control logic
typically requires feedback control algorithms which trades response time for higher
hysteresis and increased CPU overhead.
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7.2 Hypervisor tiering semantic gap

In previous section we have reviewed response time and speed limits to dynamic
memory changes to virtual machines. Such changes are required to best adapt vir-
tual machine memory to their actual consumption. We have shown how hypervisor
decision-making introduces a trade-off between CPU consumption and response time.

In this section, we study how hypervisor-level memory management leads to sub-
optimal decision-making because of information loss. In particular, we try to assess
the cost of memory tiering at hypervisor level.

7.2.1 Uncooperative hypervisor swapping

As reviewed in section [2.4] swapping is an historical method used to offload
memory pages to a slower storage backend. It has been recently used to perform
accesses to remote memory in various work [57, 61, 7]. Since swap-based systems
have been used to let processes and containers access remote memory, we may
wonder how well does remote memory swapping perform with virtual machines.
Swapping typically works by registering a free storage device partition or a file
against an operating system. In virtual machines, a swap device may be registered
at hypervisor level or guest level.

At hypervisor level, a swap device enables to grow the memory capacity available
to support page allocation for all virtual machines. Hypervisor level swapping is
convenient to support overcommitment i.e. running a total VM memory size larger
than available host memory without causing VM crashes.

On the other hand, guest level swapping enables to grow the memory capacity of
the virtual machine. Thus, it would rather be used in a scenario where the guest is
responsible for overusing memory and offloading it to its own storage backend.

In Figure [7.9] we try to assess if using existing remote memory swap prototype
using RDMA like fastswap [7] at hypervisor level to access remote memory is suitable
for remote memory accesses. In particular, we try to determine if issuing hypervisor
page offloading degrade performance compared to guest level offloading.

In this experiment, we compare fastswap and our own guest-level swap prototype
(ODswap). We try to determine how these two prototypes perform for a set of four
applications:

We are interested in getting the local memory ratio which stands for the amount
of memory used locally compared to the overall memory required to execute the
program (known as resident set size). We can configure the local memory ratio
using memory cgroups to constraint the memory available to the process and force
the swapper to evict pages.

In Figure [7.9] we can see that for ALS, an IO intensive application which reads
a dataset. It goes from around 349s for 100% local memory ratio for rmem and
fastswap to 644s with rmem and 1695s with fastswap for 50% local memory ratio.
For kmeans, when 100% of memory is local, execution time is 561s, while for 50%
local memory ratio with rmem execution time is 6911 s and 3142 s for fastswap.
For pagerank, when 100% of memory is local, execution time is 285 s, while for 50%
local memory ratio with rmem execution time is 324 s and 368 s for fastswap.
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’ Application \ #threads \ AppRSS \ Description
quickort 1 8 GiB C++ quicksort on integers
k-means 16 8 GiB Python scikit [117] k-means
pagerank 16 8.6 GiB Spark [168] GraphX

pagerank on wikipedia
categories subgraph

Alternating Least 16 21.2 GiB | Spark |168] ML recommendation
Square (ALS) algorithm on MovieLens dataset

For quicksort, when 100% of memory is local, execution time is 357 s, while for 50%
local memory ratio with rmem execution time is 755 s and 608 s for fastswap.

This experiment illustrates the page metadata information loss between hyper-
visor and guest OS. While guest OS is aware of mapping type (file-backed or anony-
mous), the hypervisor has lost this information. But, file-backed pages and anony-
mous pages require separate logics for offloading. Indeed, a clean file-backed page
may be either dropped because it has already been persisted on a storage backend
or offloaded for faster access than on storage backend. Moreover, a dirty file-backed
page may be written back on storage backend instead of being offloaded to tiered
memory. On the contrary, dirty and clean anonymous pages need to be offloaded,
but they may never be dropped without causing process crash.
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Figure 7.9: ODswap vs. fastswap

7.2.2 Uncooperative page tiering

In chapter [I| we have presented the recent progress in cache coherent intercon-
nects such as CXL [34} [60] (see §1.5.3)). It has been reported in various papers [60),
34,195, |104] that CXL memory accesses share similar semantics to NUMA memory
accesses. Indeed, it is expected from an OS perspective that CXL memory accesses
will be cachable MMIO-like accesses. Some papers such as TPP [104] or Pond [95]
even rely on simulation of a CXL.mem device as a CPU-less NUMA node. Thus, we
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’ Type \ Exposed RR \ Exposed FT \ Unexposed FT \ Unexposed RR ‘
vNUMA nodes 4 4 1 1
vCPUs 64 64 64 64
host memory 64 64 64 64
(GiB)
NUMA memory | strict binding | strict binding first-touch interleaved
policy

Table 7.3: Summary of VM configurations

believe NUMA offers relevant similarities to observe page placement consequences
of future rack scale interconnects.

Moreover, in section |3.5| we have reviewed how OS needs to map uniform virtual
pages on heterogeneous physical pages by performing automatic page placement.
However, running VMs on NUMA machines adds a second level of complexity to
memory management since both guest OS and hypervisor needs to issue page alloca-
tions. It is common for NUMA-aware hypervisors to rely on vYNUMA, an emulation
of the host NUMA topology exposed to the guest. In this section, we try to assess
how topology information is beneficial for the guest to perform optimal placement.

There exist two main static NUMA policy available for page allocation (mostly
during page fault handling) at OS level which are first-touch and Round-Robin.
First-touch (FT) policy allocates a physical page on the same NUMA node as the
CPU issuing the request.

Round-Robin (RR) policy tries to allocate physical pages in a round-robin way on
the set of NUMA nodes. There exists also dynamic policies commonly implemented
as userspace daemons trying

7.2.2.1 The influence of exposed vNUMA topology

In Figure we measure the speedup of applications in a VM configured with

different NUMA settings for a set of applications from the Parsec [22] and NAS
parallel benchmark [18] benchmarking suite over 30 iterations. The VM is restarted
between each run to prevent hypervisor page allocation pollution across runs.
The host machine is an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz with 4 NUMA
nodes each made of 16 cores per NUMA node with 2 hyperthreads per core. Each
NUMA node has 64 GiB of memory on each NUMA node. All VMs are started with
64 CPUs and 64 GiB of memory, and we configure them according to Table [7.3]
NUMA balancing and NUMA migration are disabled for this experiment.

In Exposed configuration, vCPUs are allocated on hypervisor threads pinned on
the same NUMA node as the vNUMA node DIMM. vDIMMs are allocated on an
hypervisor NUMA node and a strict policy is used to prevent out-of-node allocations.

In Unexposed configuration, vCPUs are allocated on hypervisor threads pinned
on the different NUMA nodes proportionally with 16 hypervisor threads per NUMA
nodes. vDIMMSs are allocated uniformly with first-touch policy or interleaved policy
across hypervisor NUMA nodes.

Figure reports application speedup for the different configurations. The
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Figure 7.10: Performances of applications for Round-Robin vs First-Touch NUMA
policies and Exposed and Unexposed NUMA topologies

graphic gives an overview of our study but remains impractical for interpretation
thus we rely on statistical tooling to exhibit significant differences.

7.2.2.1.1 Classifying results

Since, it is hard to visually classify if a NUMA configurations is significantly
quicker than another configuration, we rely on a statistical testing method to deter-
mine if two distributions are significantly different. In our method, we use one-way
Welch analysis of variance (ANOVA) [160] for the execution time as a dependent
variable and NUMA configuration as an independent variable. We then perform
Games-Howell test [55] to examine the difference of means between the two distri-
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butions.

One-way ANOVA requires that the distributions studied are normal distributions
which validate visually for each plot. It also requires that samples are independent
which is validated by restarting the VM between each measurements. Each group
has an equal sample size of 30 measurements. However, population variances are
different which violates the homoscedascity assumption of ANOVA. Thus we rely
Welch ANOVA and on Games-Howell tests which do not require homoscedascity
assumption.

7.2.2.1.2 Effect of FT vs RR policies

’ Exp.FT Ezp.RR diff se T df pval hedges
BT 35.74 34.38 1.36 0.45 3.02 34.19 0.00 0.77
CG 15.95 1510 0.85 0.14 6.23 43.93 0.00 1.59
FLUIDANIMATE 61.22 59.39 1.83 0.37 4.88 56.31 0.00 1.24
FT 9.26 9.53 -0.28 0.07 -3.81 55.76 0.00 -0.97
IS 0.50 0.58 -0.08 0.02 -536 34.82 0.00 -1.37
LU 42.40 26.28 16.12 2.06 7.83 29.05 0.00 2.00
MG 6.14 577 037 0.09 4.03 57.97 0.00 1.03
SP 42.30 39.36 294 0.86 3.43 31.29 0.00 0.87
STREAMCLUSTER 126.74 118.64 8.10 143 5.65 57.10 0.00 1.44
UA 41.48 33.55  7.93 0.52 15.28 35.05 0.00 3.89
BODYTRACK 88.97 89.79 -0.81 0.44 -1.83 55.51 0.07 -0.47
CANNEAL 68.70 69.88 -1.18 1.25 -0.95 29.44 0.35 -0.24
DEDUP 30.77 30.22 0.55 034 1.61 5448 0.11 0.41
EP 2.73 2.72 0.01 0.03 046 57.98 0.65 0.12
FERRET 27.04 26.84 0.20 0.17 1.18 56.58 0.24 0.30
FREQMINE 31.23 31.31 -0.08 0.58 -0.15 54.13 0.89 -0.04

Table 7.4: Games-Howell test for Expose-FT and Expose-RR

Table reports in first half all the applications which have significant differ-
ences between ExposeFT and ExposeRR and in the second half of the table the
applications with no differences. ExposeF'T', Expose RR reports the average of ex-
ecution time of various sample for these two groups. diff reports the difference
between the two averages. se is the standard error for the distribution of the differ-
ence of both groups. T is the T value which stands for the difference divided by the
standard error. df the adjusted degree of freedom. pval the Games-Howell p-value
with p-value under 0.05 showing significant differences between distributions. We
can observe that BT, CG, FLUIDANIMATE, FT, IS, LU, MG, SP, STREAMCLUS-
TER, UA are all reported to have significantly difference between expose RR and
expose FT configurations, but the other workloads like BODYTRACK, CANNEAL,
DEDUP, EP, FERRET, FREQMINE are not statistically different for RR and FT
policies. This shows that some workloads will not benefit from performance
improvements out of these policies.

We can also observe by looking at the sign of hedges that some workloads are
more efficient using round-robin policy such as BT, CG, FLUIDAMINATE, LU,
MG, SP, STREAMCLUSTER, UA. On the other hand, some workloads are more
efficient using first-touch policy such as FT and IS. This shows that there is no
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Exp. F'T Unexp.FT diff se T df pval hedges
BODYTRACK 88.97 87.99 0.98 0.31 3.13 43.33 0.00 0.80
BT 35.74 39.30 -3.56 0.71  -5.05 54.56 0.00 -1.29
CANNEAL 68.70 60.65 8.05 1.39 5.80 42.75 0.00 1.48
CG 15.95 14.64 1.31 0.16 8.35 56.27 0.00 2.13
EP 2.73 2.58 0.15 0.02 6.76 38.16 0.00 1.72
FLUIDANIMATE 61.22 59.39 1.83 0.45 4.12  49.51 0.00 1.05
FT 9.26 10.64 -1.38 0.14 -9.74 35.56 0.00 -2.48
IS 0.50 0.56 -0.06 0.01 -6.89 47.92 0.00 -1.76
LU 42.40 34.95 745 2.23 3.34 38.67 0.00 0.85
MG 6.14 813 -1.99 0.13 -15.79 47.47 0.00 -4.03
SP 42.30 54.08 -11.78 1.42 -8.29 53.23 0.00 -2.11
STREAMCLUSTER 126.74 115.46  11.28 1.38 8.18 55.40 0.00 2.08
DEDUP 30.77 30.46 0.30 0.22 1.37 35.88 0.18 0.35
FERRET 27.04 2741 -037 0.19 -197 57.71 0.05 -0.50
FREQMINE 31.23 30.37 0.85 0.56 1.51 51.64 0.14 0.39
UA 41.48 43.10 -1.62 0.91 -1.78 49.49 0.08 -0.45

Table 7.5: Games-Howell test for Expose-F'T and Unexposed-FT

rule-of-thumb policy and workloads may best behave under RR or FT
policy.

7.2.2.1.3 Effect of exposing NUMA topology as vNUMA

Table reports in first half all the applications which have significant differ-
ences between ExposeFT and UnexposedF'T and in the second half of the table the
applications with no differences.

First, we can see that BODYTRACK, CANNEAL, CG, EP, FLUIDAMINATE,
IS, LU have statistically longer execution time for ExposeFT configuration com-
pared to UnexposedFT. All these applications except IS perform better under RR
policy or they have been shown to not perform better between RR and FT policies.
Second, we can see that BT, FT, MG, SP have statistically longer execution time for
UnexposedFT. Third, some applications such as DEDUP, FERRET, FREQMINE,
UA are not impacted by the exposition of the NUMA topology. This shows that
exposing the topology can lead to better execution time if the correct
policy in the guest (FT or RR) is selected otherwise performance can be
even worse.

In Table[7.6] First, CANNEAL, FLUIDAMINATE, FREQMINE and MG work-
loads do not show statistical differences between ExposeRR and UnexposedRR con-
figurations. Second, BT, DEDUP, FERRET, LU, SP, UA have longer execution time
for UnexposedRR configuration compared to ExposeRR. However, BODYTRACK,
CG, EP, FT, IS, STREAMCLUSTER have longer execution time for ExposedRR
over UnexposedRR and FT and IS workloads are supposed to behave well under
RR policy.
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Exp.RR Unexp.RR diff se T df pval hedges
BODYTRACK 89.79 87.76  2.02 0.39 517 43.94 0.00 1.32
BT 34.38 3546 -1.08 0.22 -4.87 5251 0.00 -1.24
CG 15.10 14.83  0.27 0.07 3.69 47.80 0.00 0.94
DEDUP 30.22 31.04 -0.82 0.28 -294 3331 0.01 -0.75
EP 2.72 2.59 0.13 0.02 5.70 40.51 0.00 1.45
FERRET 26.84 27.75 -0.91 0.19 -4.76 51.42 0.00 -1.21
FT 9.53 9.07 0.47 0.07 6.52 55.21 0.00 1.66
IS 0.58 0.43 0.15 0.01 10.04 31.11 0.00 2.56
LU 26.28 26.71 -0.42 0.13 -3.17 43.67 0.00 -0.81
Sp 39.36 41.95 -2.59 0.50 -5.13 36.09 0.00 -1.31
STREAMCLUSTER 118.64 11549  3.15 1.25 252 56.77 0.01 0.64
UA 33.55 3744 -3.89 0.32 -12.12 46.38 0.00 -3.09
CANNEAL 69.88 69.80 0.08 0.19 0.44 52.43 0.66 0.11
FLUIDANIMATE 59.39 60.18 -0.78 0.8 -1.35 45.99 0.18 -0.34
FREQMINE 31.31 3148 -0.17 0.54 -0.32 56.65 0.75 -0.08
MG 5.77 5.63 0.14 0.07 1.91 41.84 0.06 0.49

Table 7.6: Games-Howell test for Expose-RR and Unexposed-RR

In this study, we have performed a comparison of erecution time in various
workloads under different uNUMA configuration with topology exposed or unexposed
and first-touch or interleaved policy. We have observed that:

1. Some applications perform identically in first-touch or round-robin policy;

2. Some workloads are more efficient using round-robin while others are better
using first-touch;

3. Ezxposing the hypervisor topology to the guest using vNUMA generally yield
performance gains (between 0 to 30%) if the appropriate application policy is
selected in the guest but exposition of the topology with incorrect policy can
also lead to worse performances than hypervisor-level NUMA policy.

This study has been conducted using coarse-grained static policy (first-touch and
round-robin) for page allocation. However, such static policy may cause subopti-
mal placing and can have high variability across runs, and it is expected that per-
application fine-grained tuning may offer better performances.
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In this chapter, we have provided an overview of virtual machines techniques
which can be used to dynamaically adapt virtual machines memory to actual guest
usage. We have performed a top-down analysis of time contribution of existing
mechanisms. We have shown how existing mechanisms introduce long delays to per-
form simple memory add and remove operations. We have reviewed guest-driven and
hypervisor-driven approaches to reduce the memory footprint of a virtual machine
and discussed their limits. In particular, we have exhibited that hypervisor-driven
approaches needed to rely on feedback control algorithms with continuous probing of
guest statistics and with information loss. We have shown that this approach could
introduce further reactivity delays undesirable for dynamic memory changes. On the
contrary, guest-driven approaches fails to shrink its caches automatically by lack of
knowledge of available host memory available.

In a second part, we have conducted experiments to try to assess the cost of in-
formation loss between guest OS and hypervisor in tiered memory management. We
have studied swap-like remote memory solutions at hypervisor and guest level to show
that hypervisor-level memory management can misbehave when page mapping infor-
mation is lost. We have also studied NUMA-like remote memory solutions to show
how topology information as well as application preferred policy for heterogeneity
could yield better execution time.

As a conclusion, this chapter has identified multiple limits to the dual memory
management of virtual machines. Based on these limitations, chapter[§ discusses
our contributions to try to tackle these issues.
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ExoVM, fast elastic VMs

In chapter[7, we have motivated the co-design of VM and hypervisor with a review
of two magor limitations with current VMs to improve resource usage.

The first limitation prevents VM to quickly reconfigure, during execution, the
amount of resources they can use. We have seen that this limit is caused by mecha-
nisms which are too slow to shrink or grow VM memory compared to the speed of a
VM to consume memory. We have detailed the subsystems responsible for slowing
down memory reconfiguration.

The second limitation describes performance degradation of applications running
i virtual machines which try to use far memory to increase memory usage in the
rack. We have seen that performance degradation is caused by the existence of two
layers of memory management in the guest and the host which perform independent
uncollaborative memory management decisions. In particular, in we have
evaluated the cost of uncollaborative memory management scenario for swap-based

disaggregated memory prototypes (as presented in §4.3.1) while in we have
evaluated problems for prototypes using a cache coherent interconnect (e.q. NUMA,

CXL).

In this section, we present FxoVM, a work in progress to support reactive re-
configuration of memory capacity in VMs and finer control over page placement on
memory tiers. We first propose to review the design of ExoVM, before discussing the
implementation and finally we present the impact of Exo VM in various applications.

8.1 Design

Our discussion so far has illustrated the problem of memory waste in virtual en-
vironments but the causes and solutions are very diverse. We have seen that memory
waste 1s mostly caused by memory resource being statically provisioned in each VM
at boot time. We have seen that static allocation was amplified by overallocation of
memory from users to avoid crashes caused by memory spikes.

As illustrated in chapter[7, there are two main limits to the widespread use of
dynamic VM instances which are estimating desired guest memory and slow
adaptation mechanisms. Thus, ExoVM addresses the delay of desired memory
estimation and proposes to directly let guest applications issue provisioning request
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which saves many CPU cycles in feedback control. ExoVM also reduces the delay
of memory hot-plug and hot-unplug by skipping the addition of pages to the page
allocator.

In this section, we first propose a simple model to understand the reasons behind
static usage of memory resources and how memory management safety is trivialized
by the use of static VMs but how it can be more challenging with techniques support-
ing dynamic reconfiguration at execution time (e.g. memory ballooning). Second,
we discuss performance consideration in the design of dynamic memory usage by
leveraging arguments presented in chapter[]. Third, we present a general overview
of ExoVM to support safe and efficient execution with guest-initiated memory alloca-
tion and freeing which are historically delegated to the hypervisor. Fourth, we discuss
the design of memory resource revocation for collaborative and uncollaborative guests
inspired by exokernel approach. Fifth, we justify the use of 1:1 mappings between
process segments and physical memory slots. Sizth, we discuss the advantages of our
approach to support inter-VM shared memory segments.

8.1.1 Safety in dynamic memory management

We propose a short model of VM memory to help capture the challenges in
safely balancing memory across VM according to their needs over time. In our
model, each VM is described with with two parameters: memory capacity and
memory usage.

8.1.1.1 Model.

First, each VM is bound to a memory capacity (Capacityy(t)) which defines
the total amount of physical pages available in the VM to satisfy page allocation
requests. Each VM is started with an initial capacity (Capacityy s (t0)) which cor-
responds to the VM allocation request issued by the VM scheduler. As illustrated
with memory ballooning and memory hotplug (see section [7.1]), memory capacity
can be changed during VM execution following an hypervisor request. Notably, in
section [7.1], we have discussed the particularities of each technique to adapt VM
capacity: Legacy memory hotplug provides a straightforward approach to memory
capacity changes with the hypervisor adding or removing DIMM made visible to
the guest through firmware topology (SRAT) and notification (ACPI). Paravirtual
memory hotplug also rely on the hypervisor to add /remove DIMMs; but it introduces
the hypothesis of guest kernel collaboration to exclude or include sub-DIMMs from
the guest memory management to support finer-grained adaptation of Capacity.
Memory ballooning fully relies on the assumption of a guest kernel collaboration by
letting the hypervisor communicate a request to the guest to change its memory
capacity.

Second, each VM consumes physical memory during its execution (Usedy (1))
which occurs as a result of an allocation request to the page allocator. Conversely,
guest physical memory may be released by issuing a page freeing to the page al-
locator. Interestingly, because of the duplication of memory management, when a
page is used in the guest and later freed, it is not freed in the hypervisor. In §7.1.2]
we have described how free-page-reporting implements a notification mechanism
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integrated to page freeing to enforce that each time Usedy (t), hypervisor used
memory Usedp,s(t) is also decremented. In section , we have reviewed various
studies pointing out that memory usage in VMs is unpredictable on the hypervisor
side. Existing paravirtual devices (virtio-balloon) supports communicating guest
used memory to the hypervisor making Usedy (t) observable from the hypervisor
at the expense of a communication delay.

8.1.1.2 Defining safety.

The safety property the hypervisor must enforce is that an hypervisor should
not kill a VM.

By definition, VM used memory is always limited by the VM memory capac-
ity (i.e. Usedypy(t) < Capacityyp(t)). When used memory grows close to the
memory capacity, the guest will invoke guest-level memory reclamation mechanisms
(see section . Similarly, when host used memory grows close to the host ca-
pacity, the host invokes hypervisor-level memory reclamation. We have shown in
section that hypervisor-level memory reclamation is undesirable because of lack
of understanding of guest memory usage. Additionally, failure to reclaim pages
at hypervisor level result in preemption of a VM with no notification which lets
absolutely no chance for guest kernel reclamation or application reclamation.

Based on Capacity(t) and Used(t) memory, we can now clarify the different
scenario which may cause safety violation.

First, an immediate safety violation occurs when all VMs running on the machine
are using more memory than available in the host (3, .\, Used,(t) > Capacitypos
). This scenario is hardly solvable at the scale of a single server and lets two solutions.
Either, the host capacity is extended (e.g. using memory disaggregation) or a VM
is removed from the set of running VMs (e.g. VM migration or killing a VM).

Second, there exist a scenario where VM safety is not immediately violated but
may be violated in the future. The conditions which leads to this scenario is when to-
tal VMs capacity is higher than host capacity (>_,.y, Capacity,(t) > Capacitypost)
but VMs are using less than the host capacity (>_,.y Usedy(t) < Capacitynost)
which means the host can still run VMs without any crash.

Thus, in order to guarantee execution safety, the hypervisor must maintain at
all times the guarantee that VMs capacities do not exceed the host capacity:

Z Capacity,(t) < Capacitypost (8.1)
veVM

8.1.1.3 Safety in classic VM memory management

The classic VM model, which is widely used in datacenters, relies on a large sim-
plification of this problem by statically setting Capacityy(t) to an initial value.
Safety is ensured a single time at allocation time by the VM scheduler which
verifies that ) .., Capacity,(ty) < Capacitynes;. However, in this model, when
Usedyp(t) reaches Capacityy(ty), there is no way to increase Capacityy p(to)
even if remaining memory in the host (Capacitypess — Usedpos(t)) would be able to
satisfy the allocation request.
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8.1.1.4 Safety in VM memory overcommitment architecture

In existing VM memory overcommitment mechanisms, such as memory hot-
plug or memory ballooning, each user defines a minimum and a maximum for
Capacityyp(t) : CapacityMinyyr, CapacityMaxyy,. The hypervisor maintains
during the execution of each VM: Capacityy (t) € [CapacityMiny pr, CapacityMazy ).

Bounding VM capacity between a minimum and a maximum gives more flexi-
bility to support safe memory overcommitment:

Z Capacity,(t) < Capacitypos (8.2)
veVM
Z CapacityM az, > Capacitynes: (8.3)
veVM
Yo € VM, Capacityyy > CapacityMin, (8.4)

8.1.1.5 Safety in ExoVM

In ExoVM, we guarantee the safety property >, ., Capacity,(t) < Capacitypos
at all time by using a memory server which maintains accounting on each VM ca-
pacity.

Capacity of a VM may be decremented either by a collaborative guest or from
the hypervisor. If a collaborative guest decrements capacity, it issues unmapping of
the process segment and unplugging and freeing of the memory region. However,
since guests may be uncollaborative, the hypervisor may notify guests to perform
revocation or directly call abort protocol. The details of the abort protocols are still
work in progress.

In this section, we have proposed a basic model and reviewed the different ar-
chitectures to ensure safe execution while maintaining performances. In the next
section, we define how to avoid trivial proposals of safety which try to minimize
guest capacity by detailing the performance conditions.

8.1.2 Performance condition: Desired memory

The safety condition ensures that no VM will be killed by the hypervisor and
that only the guest triggers memory reclamation. However, this condition alone
does not define performance objectives to best use local memory. Indeed, it would
be possible to set low Capacityy p(t) objectives in all VMs to ensure safety, however,
this would result execution time in all VMs being spent in guest memory reclamation.
Moreover, Usedyy(t) is guaranteed to be less than Capacityy p(t) by construction
of guest memory management.

In order to provide optimal performance execution, a VM needs to determine
a desired memory usage. Desired memory corresponds to the future used memory
in the guest if the VM was living under infinite capacity. There exists different
approach to estimate desired memory which we discuss in the next paragraphs.
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8.1.2.1 The problem of inferring desired memory with hypervisor man-
agement

In section[7.1] we have detailed the culprit for the delays to enforce Capacityy v (t)
changes in existing mechanisms (i.e. ballooning and hotplug). We have seen that
these delays were caused by mechanisms themselves and feedback control running
in the hypervisor which tries to automate the use of these mechanisms. In the next
paragraph, we dwell on the cost of automation through feedback control.

In §7.1.1.4] we have seen that hypervisor memory overcommitment mechanisms
rely on feedback control algorithms to adapt Capacityy s (t) in each VM. We have
shown that feedback control contributes an additional time overhead to raw mech-
anisms which further degrades responsiveness for elasticity.

The time contribution of feedback algorithm is partially caused by trying to
infer at hypervisor level what is the desired memory capacity in the next time units.
Feedback control tries to determine if Usedy y(t) is growing or decreasing over the
last time window prior to issue changes to Capacityy p(t). Indeed, guest applications
are knowledgeable of how much memory they want to use in the future by performing
memory allocations which are converted to process segment creation (mmap()) or
extension (brk()) after going through memory allocation libraries. These operations
on process segments are directly satisfied by the guest kernel through system calls
but they are never propagated to the hypervisor. Then, the hypervisor needs to
infer the future memory usage by monitoring Usedy (t) over multiple time units.

Feedback control overhead can not be entirely explained by the inference of
future desired memory. Additional overheads can be explained misprediction of
future memory usage, communications overhead caused by monitoring guest mem-
ory statistics, the implementation of the feedback control algorithm which tries to
determine the new Capacityy p(t) that needs to be injected in the VM.

8.1.2.2 ExoVM exokernel approach with guest-initiated capacity changes

Based on the observation that long delays to change Capacityy p(t) would result
in more frequent unsafe scenario, we try to remove the delays introduced by feed-
back control. In ExoVM, we propose to let VMs directly extend and revoke their
physical resources. Our intuition proposes a variation of the exokernel |49, 79, 56]
OS architecture which proposes to let processes directly access physical resources by
manipulating secure bindings on hardware resources.

In ExoVM, we propose to instrument process segment creation and extension by
intercepting system calls on process segments. Indeed, virtual memory management
requires creating a segment prior to performing a memory access. We translate
intercepted calls to allocations or freeing of ranges of the physical address space
to avoid the time-contribution of feedback-control algorithm. Thus, when a VM
requires more memory, we increment VM capacity by the size of the process segment.

8.1.3 ExoVM, fast and dynamic memory management

In Figure[8.1] we illustrate the main design ideas of ExoVM. Figure[8.1first shows
that ExoVM maintains backward compatibility for processes (e.g. P1) so that they
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Figure 8.1: Overview of ExoVM design

can still use anonymous and file-backed memory. It shows that VM are instantiated
with an initial capacity (Capacity(to)) which can be dynamically modified over time
to extend or shrink the guest physical address space. Communications between the
guest and the host are delivered over paravirtualization queues as already proposed
in ODswap. Since VMs run in processes, extension or shrinking in the guest physical
address space require an identical operation on the host virtual address space. The
final consumption of physical memory at hypervisor level is at most the current
capacity Capacity(t) of the VM and is usually lower because of on-demand paging.

8.1.4 The problem of memory resources revocation

Adding new memory resources to a VM is made very easy with the use of our
new interface. However, it also makes it faster to reach the host memory limits
by continuously adding more memory. When using more memory comes with no
constraints, there is no reasons for a guest to free memory capacity. Moreover, some
guests may be compromised and may try to willingly acquire large memory resources
to starve other collocated VMs. Thus, ExoVM requires a solution to incite guests
to free memory and ultimately to reclaim the resource.

Freeing memory could be encouraged by applying fares on memory usage over
time, however, this approach is unlikely to be satisfactory as memory leaks or bugs
could have expensive consequences. Thus, a more realistic approach can be im-
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plemented using the revocation and abort semantic proposed in exokernels. As a
summary, exokernels propose wvisible revocation to notify collaborative processes to
release resources collaboratively. Since, processes may be uncollaborative, they may
not revoke resources, in which case, the exokernel is supposed to initiate the abort
protocol which breaks the grant a process has acquired.

In our case, it would be unreasonable to assume full collaboration from guest
applications, however raising awareness about capacity pressure would enable fine-
grained decision making at application level. Concrete implementation of visible
revocation and abort is already proposed in resource deflation [132].

8.1.5 Bypassing guest page allocator: 1:1 mapping of pro-
cess segments on physical memory slots

Legacy memory hotplug and paravirtual memory hotplug add plugged memory
to Linux memory zones managed by the buddy allocator. The pool of plugged guest
physical pages later serves to satisfy page allocation request from any user-space
guest process and may also be used to satisfy in-kernel guest memory allocations (if
pages are added to NORMAL zone). In this section, we present the reasons behind
ExoVM proposals to enforce 1:1 mappings between process segments and physical
memory slots.

8.1.5.1 Flattening memory management

Guest page allocator duplicates many services which already exists at hypervisor
level. In particular, page allocation is provided by hypervisor-level buddy allocator.
We have also discussed the problem around guest-only page freeing which results
in increasing memory usage from hypervisor perspective. Free-page-reporting im-
plements hypervisor-level page freeing by buffering page freeing operations. Thus,
ExoVM maps process segments on physical memory slots to bypass the guest page
allocator.

8.1.5.2 Easier memory revocation

Memory revocation is initiated by the hypervisor to call guest application logic
to try to free memory pages with application memory layout knowledge. Memory
revocation without 1:1 mapping would be hard. Indeed, without 1:1 mapping, a
memory region could back pages in different processes and conversely a process
segment could be backed by multiple memory regions. Thus, trying to remove a
memory region would require isolating the subset of pages used by each process
and issuing page freeing on each subset. In ExoVM, we use 1:1 mapping of process
segments to physical memory slots to make revocation easier.

Revocation of private memory regions. Private memory regions are owned
by a single process. Revocation is simply performed by calling the revocation call
of the memory region in process context.
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Revocation of shared memory regions. When memory regions are shared
between multiple processes or virtual machines You can call revocation handler
bound to the memory region in the guest application.

8.1.5.3 Custom memory placement and freeing at process segments gran-
ularity

There is no real rules regarding similarity of objects in a same process segments.
The only guarantee provided by mmap is that all pages backing the objects are either
anonymous or file-backed and private or shared. However, there is no assumption
about objects properties in a process segment. In details, process segment do not
guarantee that allocated objects share similar lifetime (as in generational garbage
collector). Moreover, they do not guarantee that objects have similar access fre-
quency.

ExoVM mostly proposes to build applications memory management to try to fit
on a memory region objects which may shared similar lifetime and similar access
frequency. Ideally, a developer using ExoVM will use his knowledge of objects
access frequency and lifetime to try to ensure that objects on a memory region will
have similar properties. However, predicting these properties for each object is not
practically doable and thus, ExoVM proposes registration of custom policies to free
objects or migrate them on appropriate locations.

8.1.5.4 Bypassing guest page allocator in memory hotplug

Existing solutions for memory hotplug divide plug and unplug operations in
two phases. A first phase is dedicated to updating firmware knowledge of available
DIMMSs and creating/destroy page structures in the kernel for memory management
to work. A second phase is dedicated to adding/removing memory pages to the guest
page allocator.

The use of 1:1 mappings which bypasses the guest page allocator enables to
bypass the first phase. We have seen that in hot-add path, adding pages to the
guest page allocator accounts for 98% of the total guest contributions of memory
hotplug (in virtio-mem). Even if memory hotplug is already a fast operation, bypass
of guest page allocator enables to save 400 ms.

In the hot-remove path, the removal of pages ( offline pages) from the page
allocator only accounts for 3% of the total memory hot-unplug time. This represents
594 ms when page allocator is unused for 64 GiB removal. When we run an artificial
memory stress job concurrently to a memory hot-unplug operation, we can observe
that the time spent shrinking the page allocator can take up to 3000 ms, i.e. 5 times
longer than when the page allocator is unstressed. This means that delays to grow
and shrink the page allocator capacity are highly impacted by concurrent stress on
the page allocator from other processes.

We have observed smaller time contributions for smaller memory changes. How-
ever, there is an incompressible cost of around 30 ms which remains even for the
smallest memory (128 MiB) changes in online/offline operations. This overhead is
unaffordable for workloads which require very frequent dynamic changes as presented
as presented in Figure [8.6]
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8.1.5.5 Limits to 1:1 mappings

In sections and [2.4] we have presented the main types of mappings used in
Linux kernel memory management which are file-backed and anonymous mappings.
File-backed mappings typically implement 1:1 mappings between file offsets and
process segments. However, file-backed mappings do not support direct memory
accesses. Both of these mappings rely on kernel memory management mechanisms
such as memory reclamation and page allocation through buddy allocator. A 1:1
mappings share part of the semantic of shared file-backed mappings but they are
very different from anonymous private mappings commonly used for heap or stack.

Shared mappings and COW. One of the problem in the use of 1:1 mappings is
their impact on process forking. Process fork duplicates process information such as
virtual memory, opened files, ..., into another process. In order to reduce the over-
head of this system call, Linux memory management leverages a technique named
copy-on-write (COW) which performs a lazy copy after each attempt to write to
one of the process memory. Copy-on-write is desired as it reduces the memory con-
sumption by sharing identical memory pages between the two processes. Second,
COW reduces the latency of fork system call by avoiding full copy of virtual address
space at fork time. COW is supported for anonymous private mappings in Linux
which we try to replace with 1:1 mappings in ExoVM. Either ExoVM use shared
1:1 mappings, in which case, it will require changes to applications to support syn-
chronization for accesses to the shared segments. Or ExoVM can use private 1:1
mappings, but implementing COW on these mappings will require the allocation
of a new memory region by definition which will remove the advantage of COW to
reduce memory consumption.

Page zeroing. Converting existing anonymous mappings to 1:1 mapping is also
challenging as it breaks the assumption that freshly allocated pages are zeroed.
Indeed, anonymous private pages are zeroed in page fault handling when the page
is first accessed. A 1:1 mapping assumes that content may have been written on
physical memory prior to the creation of the mapping. Thus, pages are not zeroed
on 1:1 mappings as there are not zeroed in file-backed mappings.

Breaking page zeroing is problematic as software which build on top of anony-
mous mappings such as language runtimes or memory allocators may or may not
assume page zeroing. For instance, golang runtime does not assume page zeroing
and performs zeroing by itself in the runtime. On the contrary, jemalloc [51] rely
on the guarantee of pages being zero-filled. These systems rely on madvise with
MADV_UNUSED flag to synchronously hand back pages to the OS. And the OS

issues zeroing in page fault handling during next read or write access.

8.1.6 inter-VM shared memory

There already exists support for inter-VM shared memory with ivshmem [45].
However, existing solutions requires creation of the shared memory segment at VM
initialization. In order to best optimize the usage of memory over time, it would be
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interesting to support creation of the shared memory segment and teardown with
explicit control from the user.

The infrastructure to support dynamic initialization of inter-VM shared memory
segment by a guest can be provided easily by ExoVM memory region. Thus, we
integrate an argument to memory region allocations to define if the VM would
requires sharing the MR with other VMs.

In this section, we have presented an overview of the main design points of Ez-
oVM. In particular, we have presented FxoVM as a solution to support dynamic
capacity changes in VMs while maintaining safety of executions. We have intro-
duced the motivation behind guest-initiated decisions to avoid the expensive cost of
inferring quests desired capacity. Then, we present the different components and
abstractions proposed in FExoVM to support safe allocations initiated by the guest.
Next, we introduce the different motivations behind 1:1 mappings of process segments
on physical memory slots. Finally, we proposed to leverage the existing abstractions
of ExoVM to support inter-VM memory sharing.

In the next section, we present the details of the implementation of ExoVM.
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8.2 Implementation

In section we have presented the two software components used in ExoVM
to support hotpluggable memory regions.

Similarly to section we present the implementation of these two software
components. We begin by a presentation of the guest Linux kernel module which ex-
poses a virtio PCle device to deliver paravirtualized communications with the hyper-
visor. Then, we present the hypervisor side implemented as a qemu device which im-
plements the server part of the virtio device. Finally, we perform a micro-evaluation
study of the individual performances of each memory region operation.

8.2.1 Guest side

As explained before, ExoVM is made of two main communicating components,
one in the hypervisor and another one in the guest. In this section, we discuss the
implementation of the guest interface between userspace and the kernel.

First, we shortly present ExoVM userspace interface and how it delegates control
operations to the kernel. Second, we present how we integrate with the existing DAX
system in Linux to support direct memory accesses with hardware MMU to tiered
memory. Third, we explain how we support the different operations on guest memory
regions with support for allocations, freeing, plugging, unplugging and revocation.

8.2.1.1 ExoVM userspace interface

One of the main interest of ExoVM is to let guest processes directly perform
the memory management operations provided by the memory region API. It is
also important that guest processes can access the memory resources which are
dynamically added to the virtual machine.

In [8.1] we present the userspace interface to ExoVM which proposes userspace
hooks to hypercalls.

Listing 8.1: vDIMM API

typedef struct vdimm {
uint64_t gpa;
int region_id;
} vdimm_t;

int exovm_plug (vdimm_t svdimm, mr_t smr);
int exovm_unplug (vdimm_t svdimm);

Listing 8.2: MR API

typedef struct mr {
uint64_t raddr;
uint64_t rlen;
uint32_t rkey;
} mr_t;

int exovm_mr_alloc (mr_t smr, size_t size, uint64_t align
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uint8_t shared);
int exovm mr_free (mr_t smr);
int exovm_mr_free_page (mr_t smr);

typedef void (xreclamation_cb_t)(int);
int rmemctl_register_cb(mr.t sxmr, reclamation_cb_t reclamation_cb);

Guest-kernel communications. Communications between user-space process
and kernel are implemented using netlink, a communication mechanism integrated
with BSD sockets. We use netlink since it is inspired by BSD sockets networking
primitives to issue message-passing communications between userspace and kernel.

Process segments. In §8.1.5 we discuss ExoVM tries to map process segments
directly to physical memory slots. We rely on the existing DAX system in Linux
which supports the creation of a special kind of process segment with dedicated page
fault management. DAX segments have similar semantics to a shared file mappings
however every operation on the virtual address space is directly handled by the
MMU without going through software layers like page cache. In the next section,
we detail the integration with DAX system in Linux.

8.2.1.2 Implementing 1:1 mapping using DAX

In we have presented the reasons and challenges to use 1:1 mappings be-
tween process segments and physical memory slots in VMs. In ExoVM, 1:1 mappings
are implemented using DAX, a component of Linux kernel memory management.
We have shorty presented in the use case for DAX which is mostly used for its
capability to bypass page cache by delivering direct memory access on NVDIMMs.

Using DAX. A process can create a DAX segment by calling mmap system call
with appropriate DAX flags (i.e. MAP_SYNC and MAP_SHARED_VALIDATE).
Linux Kernel appends the mmap segment (struct vm_area_struct) to the process
VMA tree and tags the segment as DAX. DAX mappings guarantees that mutations
to the DAX segment are directly propagated to the underlying backend without
going through software caches (MAP_SYNC).

DAX bus. In Linux, DAX [161] is implemented as a bus abstraction of the Linux
Device Driver (LDD) model |38]. In this model, a bus abstraction represents "a
channel between the processor and one or more devices”. All devices are connected
through a bus which can either be physical (PCle, 12C, USB, SCSI...) or virtual
(DAX, workqueues, ...). A bus owns a list of devices (struct device) and drivers
(struct device_driver).

DAX device driver. In Linux device driver model, all system drivers are tracked
by Linux to associate them with a device. Thus, DAX provides two implementation
of struct dax_device_driver which is a subclass of struct device_driver. The first
implementation provides the devdazr driver which creates a device in Linux devfs
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enable process to map this device in their address space as a DAX segment. The
second implementation provides the kmem driver which supports adding the mem-
ory resource capacity of a devdax device to System RAM. Transitions from devdax to
kmem can be done using daxctl utility. However, the opposite operation requires de-
fragmentation and regularly fails. ExoVM can directly leverage the existing drivers
and typically use devdax by default.

DAX device. The other components of the bus are devices. DAX devices (struct dax_
dev) are a subclass of devices (struct device). Each DAX device owns a physically
contiguous range of device memory as well as the infrastructure to support creation

of DEVICE zone mappings (pgmap). A DAX device is part of a larger abstraction
named DAX region. In ExoVM, we create a new DAX device after each successful
plug operation.

DAX regions. DAX regions represent independent devices in the kernel device
tree. Regions may be static which implies that the user is responsible for assigning
a correct numbers (e.g. /dev/daxN.M) for naming of the device and that the device
lifetime corresponds to the lifetime of the DAX driver. Dynamic regions supports
creation, deletion of DAX regions through sysfs interface (a user-kernel communi-
cation interface), and naming of the device relies on allocated numbers. Dynamic
regions requires user management of other abstractions such as DAX mappings. Ex-
oVM allocates a new static DAX region each time a new plug operation succeeds.
This means that each plug operation results in the creation of a new DAX region
and a new DAX device.

8.2.1.3 Support for the different operations

As presented in §8.1.2.2] we directly let guest processes issue allocation, free, plug
and unplug requests to the hypervisor instead of trying to infer from the hypervisor
when to issue such actions. Allocation, freeing, unplugging and plugging operations
are all supported using hypercalls. Revocation of memory region is implemented
using an upcall.

The hypervisor sends a response back to the guest containing the results of the
allocation request made of guest physical address, length and security key. The
response message is received in interrupt context, however registration of the DAX
device must be performed out of atomic context. Thus, similarly to ODswap de-
scribed in section [6.3] we schedule a work for registration of the DAX device.

In ExoVM, we use a single PCle device to implement paravirtualization connec-
tions. The PCle device is used as a parent node of all children DAX devices created
after completion of plug operation. Using a single PCle device avoids the cost of
hot-adding device (acquisition of a read-write semaphore) in the critical path and
reduces the memory footprint caused by PCle device metadata.

8.2.1.3.1 Implementation of MR allocation
When ExoVM receives an allocation request for a memory region, ExoVM per-
forms an allocation hypercall to the hypervisor to request the allocation of memory
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in the hypervisor process. At this stage, the memory is not available for the guest
and the capacity has not grown.

8.2.1.3.2 Implementation of MR freeing
When ExoVM receives a freeing request for a memory region, it simply forwards
the operation to the hypervisor using an hypercall.

8.2.1.3.3 Implementation of MR plug

Each device maintain a list of guest physical address space ranges named re-
sources indexed in a resource tree. In DAX, the list of resources associated with
a device is maintained in the DAX region. In ExoVM, there is a single resource per
DAX region and the insertion of new resources is accompanied by the creation of
a new device. It is Linux responsibility to insert the device resource in the global
resource tree.

Memory is added as device memory and represented by a PCle device.

8.2.1.3.4 Implementation of MR unplug

When the guest OS receives an unplug request from the process, it first forwards
the request to the hypervisor to remove the memory region from gemu memory
tree. When the guest OS receives the completion event for the unplug hypercall, it
simply implement removal of a memory region in the guest by unregistering the per
memory region DAX device, DAX region and IO memory in the resource tree.

Guaranteeing removal of all the kernel structures associated with a memory
region is critical to prevent memory leaks. It is particularly challenging to work
with static DAX region designed for static resources while ensuring that reference
counters on kernel data-structures drop to zero to be freed.

8.2.1.4 Implementation of revocation

ExoVM supports revocation by registering a callback which is registered as a
Linux signal with the guest OS. After receiving a notification from an hypervisor
upcall, guest OS delivers a signal to the process which triggers the execution of the
signal handler in userspace.

This section summarizes the implementation of the memory region interface on
the guest side. In the next section, we describe the hypervisor implementation of
these operations.

8.2.2 Hypervisor side

In the previous section, we have presented FExo VM interface and their implemen-
tation in guest OS. ExoVM communicates with the hypervisor using virtio paravirtu-
alization similarly to what has been described in ODswap. In this section we present
the hypervisor side implementation of ExoVM.
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8.2.2.1 Hypervisor-side of memory regions

In §8.2.1.3.3] we have discussed the guest side of memory hotplug and in partic-
ular, how the guest adapts to expansion and shrinking of its physical address space.
In this section, we focus on how the hypervisor-side extends and shrinks guest phys-
ical memory. In particular we review gemu abstractions of guest physical memory
and how they link with KVM memory abstractions. Then, we present how ExoVM
implements plug and unplug calls.

Qemu AddressSpace. Qemu uses an address space abstraction (AddressSpace)
to represent a guest physically contiguous memory range from hypervisor knowledge.
A VM has multiple address spaces but the two most important are IO and memory
address spaces. An address space is made of a tree of memory regions. A memory
region describes the result of an hypervisor virtual allocation. It contains various
information regarding how the allocation chunk can be used such as support for
sharing.

Qemu MemoryRegion. Since memory regions are represented as a tree, there
exists two kinds of regions: container type and a leaf type. Container type is a logical
node type in the tree data-structure which is used to store children nodes. Leaf type
memory regions can be 10 memory regions, RAM, IOMMU ...

ExoVM MemoryRegion sub-tree. We introduce a wrapper around the original
gemu MemoryRegion abstraction. In this wrapper, we store state metadata to track
whether a MemoryRegion is allocated or plugged.

Additionally, insertion and deletion in gemu memory region tree is not thread-
safe. Thus, we isolate a subtree of the MemoryRegion tree on which we synchronize
insertion and deletion with a mutex.

8.2.2.2 Support for the different operations

In parallel with the guest support for the different operations presented in §8.2.1.3],
this section presents the implementation of the different operations on the hypervisor
side.

8.2.2.2.1 Implementation of MR allocation

When the hypervisor receives an allocation requests from the guest, it first al-
locates the wrapper for the memory region. Then, it uses gemu memory allocator
to allocate a memory range in the hypervisor virtual address space as a private
anonymous mapping. The allocation request may require a shared allocation, in
which case the allocation is simply turned into a shared anonymous allocation in
the hypervisor. It appends the memory region to the list of allocated memory region
and replies to the guest by providing the address in the host as well as the length
and an identifier of the memory region.
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8.2.2.2.2 Implementation of MR freeing

It removes the memory region from the list of allocated memory region. Then, it
decreases the reference counter on the gemu memory region object which calls the
free callback. Finally, it replies back to the hypervisor to inform it of the completion
of the operation.

8.2.2.2.3 Implementation of MR plug

When the hypervisor receives a plug request from the guest OS, it first performs
an allocation in the guest physical address space to find the next available range.
Second, it inserts the memory region in the memory region subtree of the hypervisor
which exposes the memory region in the guest physical address space and host virtual
address space. Third, it replies to the guest OS with the guest physical address space
where the memory region has been installed.

8.2.2.2.4 Implementation of MR unplug

Upon reception of an unplug request from the guest, the hypervisor removes
the memory region from gemu memory region subtree. It acquires the lock on the
memory region and changes its state to ALLOCATED before appending it into a
list of allocated memory regions.

The Memory region finite state machine.

Hypervisor tracks the state for each memory region created from a guest request.
Thus, we return errors for the following operations on memory regions: It is for-
bidden to free a plugged memory region, to free a freed memory region, to plug a
plugged memory region (private) and to plug a freed memory region. Similarly, it
is forbidden to issue some operations on vDIMMs such as unplugging an unplugged
vDIMM, plugging a plugged vDIMM.

This section concludes the implementation of the mechanisms currently supported
i ExoVM on the hypervisor side. It has presented how guest requests are treated
and how memory management is performed. The next section presents a small
guest tool used to perform automatic conversion of memory management in existing
applications to use FExoVM.

8.2.3 Supporting the execution of existing applications

ExoVM proposes a new interface for processes memory management to reduce
memory usage on a server. Thus, optimal memory management decisions can be
achieved but require source code modifications to work with ExoVM. However, it
is possible to maintain transparent execution of processes while using ExoVM with
simple memory management system calls instrumentation. Thus, we propose to in-
strument the creation, destruction and expansion of new anonymous memory map-
pings support the execution of various applications.

Upon creation of a new anonymous segment, ExoVM replaces the segment with
the allocation of a memory region of similar size, it then calls plug on the memory
region and maps the memory region as a DAX segment in the process. Currently,
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no callback is registered with the memory region for revocation of a memory region
following an hypervisor upcall. The implementation of a default method is work-in-
progress.
Upon teardown of the segment, ExoVM unplugs and frees the memory region.
The support for expansion of an anonymous segment is still work in progress.

8.2.4 Micro-evaluation

This section proposes early micro-evaluation of isolated part of ExoVM to better
examine the performances of ExoVM compared to classic VMs.

Description. After presenting the details of the implementation of ExoVM, we
try to determine the overhead introduced by plug and unplug operations on a
memory region. In particular, we verify that these operations are not impacted too
severely by concurrent operations from threads or processes.

In this experiment, we try to evaluate how plug operation scales with the number
of threads.
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Figure 8.2: Scalability of plug operation

Observation. In Figure[8.2, we can observe that plug and unplug operations can
complete in less than 30 ms. We observe very large variation when the number of
thread is low which is still unexplained at this stage.

Interpretation. Plug and unplug operation in ExoVM are still dependent of an
internal mechanisms which introduces large variation in operation delays. However,
we expect the duration of plug and unplug operation is lower than existing hypervisor
hotplug techniques for two reasons. First, the bypass of guest page allocator supports
saving a few milliseconds. Second, unplugging can be completed quickly as it does
not require page migration thanks to the use of 1:1 mappings.

In this section, we have covered the main implementation details of ExoVM.
Many part of the implementation are still ongoing work and we still need further
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evaluations to validate some of the implementation choices we made to implement
ExoVM.
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8.3 Evaluation

In section we have presented the details of the implementation of ExoVM
to offer fast dynamic memory management in VMs. In this section, we perform an
evaluation of the different functionalities offered by ExoVM.

First, we evaluate the possibility to let a guest initiate inter- VM shared memory
segments using ExoVM and propose a use case for a FaaS platform. Second, we
present how ExoVM supports fast elastic adaptation of memory capacity.

8.3.1 inter-VM shared memory segment

In this section, our analysis tries to show how FxoVM shared volatile memory
can yield significant speed-up to FaaS runtimes while reducing memory consumption.
Our scenario illustrates how a single AI model can be shared across various workers
to perform inference.

We try to observe the advantages of ExoVM compared to concurrent backend for
a FaaS runtime by first observing how it supports a higher number of concurrent
activation. First, we discuss how ExoVM helps to reduce the duration of FaaS
activations. Then, we present its impact to reduce the init time of container cold
starts in FaaS platforms.

8.3.1.1 Description of the FAAS experiment

Description In this experiment we setup two VMs with 64 vCPUs and 32 GiB
memory. Each VM serves as a worker node for a kubernetes cluster. The kubernetes
cluster schedules containers on a uniform view of nodes. We deploy an openwhisk
[114] FaaS platform on the kubernetes cluster. Openwhisk deploys control containers
(APT gateway, Scheduler, Invoker, Databases, ...) and execution containers (user
functions). Openwhisk provides an API which enables a user to define and upload
a function or action with a configuration. The action is created but not invoked
directly. A user can then send a request to invoke the action which is named an
activation in Openwhisk. In our experiment, the action used is an inference phase
on a 3.92 GiB LLaMa [144] model.

The FaaS load injector In this experiment, we use FaasLoad [107], a load injec-
tor for openwhisk. We configure faasload to use an inter-invocation time of 10s for
100 activations. This corresponds to the average delay between activations.

We also rely on OpenStack Swift Object Storage |[115] used for storage persis-
tency. It is ran in a container in the host. Swift is used on top of a ext4 fileystem
using HDD or NVMe as a storage backend. Swift is carefully configured to use 100
workers to prevent swift number of workers to be a bottleneck in the evaluation.

The different backends We review five different backends to run LLaMa infer-
ence phase in a function.

First backend is disk, it uses a HDD as an underlying storage for Swift storage
and K8s cluster. Openwhisk function requires downloading the model locally before
executing it with disk backend for every new activation.
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Second backend is NVMe, it uses a ”Intel DC P3700” SSD NVMe with 31 hard-
ware queue pairs (submission queues and completion queues). Openwhisk function
requires downloading the model locally before executing it with NVMe backend for
every new activation.

Third backend is FxoVM which uses a memory segment shared between virtual
machines with a preloaded LLaMa model of 3.92 GiB exposed as a DAX device in
the guest. It can perform direct memory accesses and requires only a single function
to download the model for all subsequent activations.

Fourth backend is virtiofs which uses virtiofs [152] a shared file system between
virtual machines. Since the filesystem is shared by all virtual machines, the model
needs to be downloaded a single times as well.

Fifth backend is virtiofs-daz which uses virtiofs [152] a shared file system between
virtual machines exposed as a DAX device which is comparable to ExoVM. virtiofs
with DAX support is experimental but enables to bypass guest page cache to directly
use host page cache. Since the filesystem is shared by all virtual machines, the model
needs to be downloaded a single times as well.

The disk backend has been tested but because it is sequential, and FaaS is par-
allel by definition, it causes activation timeouts on every new run of the benchmark.
A takeaway about this evaluation is that a FAAS platform requires a backend sup-
porting parallel 10s.

8.3.1.2 Analysis of activation concurrency

In this experiment, we try to determine how ExoVM can help support a higher
number of simultaneous inference phases on a machine. We define concurrency as
the number of activations ongoing at each instant in time.

25 —— exovm
m NVMe
o
-;—;20 —— virtiofsdax
=
)
(9}
$15 Jﬁ
>
e
010
5
|9}
S 5
o
0O 500 1000 1500 2000 2500 3000

Time (s)

Figure 8.3: Activation concurrency
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Description In this experiment, we use FaasLoad to inject new activations in
the openwhisk platform. The openwhisk platforms ships a scheduler responsible for
scaling the number of concurrent activations based on the available resources. Based
on FaasLoad injection policy (inter-invocation time of 10s for 100 activations), we
observe the number of concurrent activations in the platform over time.

Observation Figure represents the number of concurrent activations. We can
observe that virtiofsdax achieves up to 25 concurrent activations for the smallest
duration of execution. ExoVM achieves up to 20 concurrent activations for a total
execution duration of 1150s. NVMe is bottlenecked at 16 concurrent activations for
a duration of 3300s.

Interpretation First, ExoVM reduces total execution time by 3 compared to a
NVMe backend. Since, it uses a single 4 GiB shared segment for all instances, it
manages to save significant amount of memory which allows scaling to a higher
number of activations. On the contrary, in the NVMe case, for each activation
execution instance memory is consumed to cache filebacked pages of the IO model.
This limits the scaling of instances to only 15 concurrent activations.

Second, virtiofsdax seems to outperforms ExoVM both for duration and maxi-
mum number of activations. However, the total duration is smaller because the run
is interrupted by a silent error after only 32 activations complete out of 100. We are
not investigating the bug any further as it is likely caused by virtiofsdax.

8.3.1.3 Analysis of activation init time

One of the main problems of FaaS platforms is caused by the initialization of
containers to execute functions (init time). Some techniques support attaching
storage with model pre-populated content. In particular, it is possible to load a
ML model on attachable storage to reduce init time. We compare the different
techniques available to ExoVM.

Description. In openwhisk, ”init time is the time spent initializing the function.
If this value is present, the action required initialization and represents a cold start.
A warm activation will skip initialization, and in this case, the annotation is not
generated” [11]

Observation. Figure reports the distribution of init time. We can observe
that distributions are bimodal with a first mode centred at 0s and a second mode at
different values depending on the labels considered. This bimodal aspect is caused
by the nature of function starts which can be either cold or warm. A cold start
occurs when the Faas platform has no preinitiated instance of the function ready
while warm start are a container reuse for a later invocation. By definition, warm
start have an init time of Os while cold start require some time to prepare the
function. In our case, init phase includes loading the LLaMa model.

Second, we can see that cold start mode is lower for ExoVM with 300 ms while
virtiofsdax is centred around 450 ms and NVMe around 2000 ms.
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Interpretation. ExoVM outperforms the other mechanisms to reduce the init-
time of functions.

8.3.1.4 Analysis of activation duration

In the previous experiment, we have focused on the initialization of activations
in preparation phases. In this experiment, we try to observe the influence of the
backend on the execution time of the function.
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Figure 8.5: FAAS invocations
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Observation We can see that ExoVM (190s) outperforms virtiofsdax (290s) and
NVMe (> 350s). Additionally, while ExoVM has a narrow distribution centred
around its mean value, virtiofsdax and NVMe have broad distribution. NVMe even
exhibits a second mode in its distribution.

Interpretation Figure 8.5 shows that outside the init time of container runtime,
ExoVM is able to achieve significant performance gain by performing direct access
to memory instead of going through file system layers on memory or on a NVMe.

In this section, we have motivated the use of quest-initiated shared memory seg-
ments which are supported in ExoVM. Through a detailed evaluation of a FaaS
platform, we have exhibited that ExoVM shared memory segments can be used to
reduce the initialization of FaaS functions in order to achieve higher concurrency.
In particular, we have shown that ExoVM can beat concurrent solutions such as
wvirtiofs-daz or NVMe to share memory between VMs. This evaluation remains a
specific use case of ExoVM and the next section will instead focus on how ExoVM
1s able to support fast memory changes.

8.3.2 Elasticity

In we have presented the benefits of allocation and plugging of gquest-
initiated shared memory segments in a Faas runtime. In this section, we present
ongoing work on how ExoVM supports fast adjustment of memory capacity in VMs.
In particular, we present one of the limit of our prototypes encountered when the VM
executes processes which have very short lifetime which stresses the time contribution
of plug and unplug operations.

8.3.2.1 Short-lived process and the overhead ExoVM

In this experiment, we try to estimate the performances of ExoVM for short-lived
processes. Indeed, ExoVM requires plugging memory when a new process segment
is created or extended and unplugging memory when the segment is destroyed (e.g.
at process termination). This instrumentation incurs an extra overhead compared
to simple process segment creation and destruction used in traditional VMs.

Description In this experiment, we compare tree different VM configurations.

First, we test ExoVM which uses a VM initiated with 2GiB of memory and
64 vCPUs. We use a small instrumentation program which makes compilation
transparent by instrumenting mapping of anonymous memory with calls to ExoVM
API to hot-add memory in the VM.

Second, we test Linuzr 5G, a VM which is statically allocated with a memory
size of 5 GiB and 64 vCPUs.

Third, we test Linuz/FPR 5G, which is similar to Linuz 5G but uses the free-
page-reporting mechanism (see details in to report free pages during the VM
execution.

We evaluate these configurations with the compilation of Linux Kernel 6.1 with
a default kernel configuration. Compilation uses 64 threads with gcc compiler.
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Figure 8.6: Comparison of VM RSS for different techniques

Observation In Figure 8.6 we can observe that the resident set size of the VM
oscillates around 2 GiB memory for a duration of 450s.

In static VM (Linuz 5G), the VM RSS shortly reaches the capacity of the VM
(5 GiB) and the memory usage never decreases until the termination of the VM,
100 s later.

In FPR VM (Linuz/FPR 5G), the VM RSS is only decreased of a few MiB while
the usage remains steady around the 5GiB capacity for a duration of 100s. It is not
illustrated on this plot, but the RSS in this configuration decreases as soon as the
compilation process terminates.

Interpretation Because of the additional blocking time caused by waiting for
plug to complete, we were expecting ExoVM to slow down Kernel compile. Indeed,
for the compilation of each individual C file, a new process with very short lifetime
is created and wait for plug to complete. However, the overhead introduced by
ExoVM is much larger than expected and, in total, slows down the compilation by
5.

During the execution of the program, we have tried to trace the time contribu-
tions behind the overhead in ExoVM. We have observed unusually long delays in
plug time which prevents the execution of more compilation processes. Normal plug
delays cost up to 30 ms, but we have observed up to 2 s spent trying in plug time.
We have been able to track down the overhead to long wait time spent trying to
acquire a per-CPU read write semaphore mem_hotplug_begin() used in the unplug
and plug path in the kernel code. We are currently investigating the reasons behind
the long plug delays.

As a summary, in we have shown the interest of using shard memory
segments across VMs support reference to identical pages between VMs. In §8.5.9, we
have shown that ExoVM enables to reduce the memory consumption of VMs thanks
to quick adaptation of its capacity but FxoVM does not work well with short-lived
processes. We leave for future work the evaluation of elasticity in long-lived processes
as well as the evaluation of the revocation mechanisms in a collaborative guest which
implement elegant revocation of memory region. We also want to evaluate practical
scenario showing that abort mechanism is able to maintain safe execution in all VMs
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despite an uncollaborative guest.
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This chapter presents our second prototype, FxoVM, still under development.
ExoVM supports fast adaptation of VM memory capacity to support safe use of
dynamic VMs in datacenters.

In details, the main contributions in FxoVM are the following.

The main idea proposed in ExoVM is to let guests report the capacity changes
desired instead of detecting it in the hypervisor. Thus, ExoVM proposes to hand to
the guest the decisions of issuing memory allocations, freeing, plugging and unplug-
ging. This proposal is based on the idea that collaborative guests should benefit from
unused memory in the server. We maintain in the hypervisor the responsibility of
verifying when resources should be reclaimed in a guest, as only the hypervisor is
aware of memory usage and capacities across all VMs. However, we directly hand
to guest applications the responsibility to perform memory reclamation as it allows
each guest application to perform finer-grained decisions for memory reclamation.
Guest application reclamation is still under progress but we expect faster migration
of memory to support fast memory unplug.

Second, since some guests may be uncollaborative and may try to acquire all
resources, we propose, as in the exokernel design, an abort protocol to revoke the
ability of a guest to acquire hypervisor resources. The implementation and evaluation
of this protocol is still under progress.

Third, we implement support for inter-VM memory sharing which is provided
simply by decoupling allocation from plug operation.

Fourth, ExoVM draws from the detailed analysis of bottlenecks in existing mech-
anisms which try to support dynamic capacity changes (memory ballooning, memory
hotplug, ... ). Notably, ExoVM supports faster plug and unplug operations by by-
passing the guest page allocator thanks to the use of 1:1 mappings.

The early evaluation of Exo VM presents the potential use cases enabled by guest-
initiated shared memory segments across multiple virtual machines. FExoVM show
promising results to reduce memory usage but it still requires improvement to reduce
the performance degradation in guest applications. QOur ongoing work to support
transparent execution of applications with Fxo VM should ease the evaluation of many
more applications.
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Conclusion

Summary

System virtual machines have been in use in datacenters for a couple of decades
now. They are at the core of sustainable profits and limited energy consumption
in datacenters by supporting resource sharing while guaranteeing isolation between
customers. In this thesis, we propose three contributions to reduce memory usage
in virtual machine platforms.

First, we propose ODswap, a solution to support transparent memory accesses
on remote machines using RDMA. ODswap proposes allocation and freeing of re-
mote memory to best use memory leftovers in various servers. ODswap implements
on-demand memory consumption on the remote memory server to reduce memory
footprint. It also targets the problem of uncollaborative memory management deci-
sion by leveraging guest swapping decisions rather than host swapping decisions as
in existing prototypes. We perform a detailed evaluation of ODswap where we show
that ODswap can outperform DSM-VMs by a factor of 3 to 6 for representative
cloud applications.

Second, we present multiple detailed evaluation results to motivate the co-design
of VMs and hypervisors. In these evaluations, we present two sets of arguments
around heterogeneity and dynamic memory changes. In a first set of evalua-
tion, we try to determine the reasons behind the widespread use of static VM and
the low enthusiasm for techniques supporting dynamic memory capacity changes.
We demonstrate that existing techniques support dynamic memory change at the
cost of very long delays which almost always lead to guest memory reclamation and
may result in undesirable guest process kills. Furthermore, we show that these tech-
niques are implemented in the hypervisor and impose an additional delay caused
by detection of desired guest memory changes in feedback control algorithms. In
a second set of evaluation, we present the performance impact of information loss
between guest memory management and hypervisor memory management. We illus-
trate the problems of duplicating memory management in two scenarios: swapping
and vVNUMA topology configuration. In a first scenario, we show that swap-
ping loses track of metadata information associated with an OS page which results
in 100% overhead in IO intensive applications because of uncollaborative decisions.
In a second scenario, we show that exposing NUMA topology to the guest with ap-
propriate policy selection can lead to up to 30% performance gains in representative
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applications.

Third, we propose ExoVM, a work-in-progress prototype which implements
fast dynamic memory changes in VMs inspired by exokernel OS design. ExoVM is
designed by trying to address the observations presented in our second contribution.
ExoVM proposes guest-initiated memory hot-plug and hot-unplug. Additionally,
ExoVM decouples plugging operation from resource allocation and unplugging from
resource freeing. In addition, this decoupling allows us to support easy memory
sharing across VMs and support to let the guest explicitly request memory from
specific backends, with desired page granularity. We provide early evaluation of our
current prototype to show the potential benefits of shared memory initiated by the
guest compared to other prototypes as well as memory savings thanks to dynamic
allocation and freeing of resources.

Future work

We consider the following future works on ExoVM which is still unfinished.

Benchmarking revocation of memory in ExoVM. As ExoVM directly let
guests manage their memory capacity, we have seen that it requires a revocation
mechanism implemented in the hypervisor to revoke the access to memory. We still
need to evaluate how fast memory can be revoked and wether it may lead to unsafe
scenario. This is our top priority.

Benchmarking elasticity in ExoVM. Currently, we only have limited evalua-
tion results of ExoVM ability to make VM elastic. In particular, our only evaluation
is performed on an unrealistic workload based on Linux Kernel compilation. We
would like to evaluate ExoVM on more realistic cloud applications. This requires
making ExoVM memory management more transparent for applications.

Arbitration in ExoVM. In dynamic memory management solutions, such as
ballooning or ExoVM, there exist a stable configuration which happens when the
host is under memory pressure where VMs tend to maintain steady capacities in a
selfish way. When static VMs are used, hypervisor memory is shared in proportion
defined by allocated memory. It can also be seen as, VMs get assigned a weight
which corresponds to the ratio of allocated memory over hypervisor memory. In
ExoVM, we need to assign a similar weight to VMs to be able to balance memory
between VMs when hypervisor memory is missing.

Speeding up ExoVM mechanism. In the stable configuration presented in the
above program, guests and hypervisor experience memory pressure. We expect
existing techniques which rely on hypervisor page allocator to perform even slower
under this configuration. Indeed, in ballooning and memory hotplug, VMs perform
unnecessary round-trips to the hypervisor page allocator to release resources which
are likely to be allocated again for another VM soon after release time. We would like
to confirm our hypothesis with further evaluations and leverage ExoVM design to

175 Yohan Pipereau



speedup borrowing memory. In ExoVM, thanks to the explicit control by the guest
of allocation and freeing of memory, it may be possible to implement faster sharing
of memory between two guests by delegating page freeing and page allocation to
hypervisor user-space.
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Side contributions

During this thesis, I have also contributed to various external projects which
have inspired new ideas.

JNVM

In particular, in JNVM [91], T performed evaluations to exhibit that go-pmem
garbage collector which implements a concurrent mark-sweep does not scale to col-
lect large heaps, in particular on NVDIMM. This observation has motivated the
idea to use processing power on remote memory nodes to assist language runtime
in the collection of unreferenced objects.

Garbage Collection on disaggregated memory

For a moment, there has been an idea by people working on disaggregated mem-
ory that cache coherent interconnects would not scale and would require separating
servers in different cache coherency domains. Based on this idea, we have started to
work on the possibility of garbage collector to collect memory on uncoherent heap
memory. This led to the introduction of the idea of collection on a heap snapshot
in remote memory. The control of how and when data should be written back on
remote memory is supported by the introduction of a software cache which enables
to instrument writeback. Instead of synchronizing mutator threads and collector
threads on every write, using a write barrier mechanism, we propose to leverage
the software cache and to perform synchronization only during writeback. Since
writeback operations occur less frequently than write operations, this design could
reduce the cost of barrier for synchronization in concurrent GC. Implementation and
correction to the initial design work have been made during a 6 month internship
by Adam Chader which carried on the work in a PHD thesis.

Abusing Dune for memory placement

As presented in §4.3.4] various works [60, 125] have shown that swap-based
prototypes introduces multiple biases causing poor simulation conditions to remote
memory accesses. The problem is that alternatives to swapping for remote memory
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access such as dirextCXL [60] require hardware support. Other alternatives like
ATFM [125] require modifications to source code to perform remote memory accesses.
Thus, we have tried to look for alternatives to swapping to support transparent
placement of pages on memory tiers with per-application policy. We found in Dune
[20] a relevant method to implement transparent tiering mechanisms directly in
the application. Indeed, by abusing virtualization hardware extensions, Dune let
processes directly manage their own page table. In particular, Dune maintains
physical memory integrity and confidentiality by leveraging the second level page
table (EPT) to really isolate processes. Dune still suffers from IO amplification
as it manages pages instead of objects and it still relies on page fault management
which prevents CPU pipelining. However, custom placement policies implemented in
each application could lead to sufficient improvement and prevent the drawbacks of
Dune. This idea has led to a master project, followed by a PHD thesis, conducted
by Jana Tolga to implement a runtime where transparent tiering policies can be
implemented.
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Appendix

All graphs presented in this chapter present call stacks from top to bottom in
a graph named icycle graph. The width of frames represents the time contribution
of the different functions. Saturated colors also represent the largest time contribu-
tions.
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Figure 7: Hypervisor inflate ICycle Graph

Figure [7] shows three independent contributions to CPU time during the mea-
surement.

179



Icicle Graph

kworker/31:1..
ret_from_fork
kthread

worker_thread
process_one ..
update_ballo. .
_al.. te..
get_.. vi..
kern.. vp. .
cleas:  o..

Figure 8: Guest inflate ICycle Graph

First, the top bar in the histogram reports that a single thread among the 16 threads
used for the VMs has a large CPU usage.

Second, the leftmost frame under qemu kvm_cpu_exec() stands for 27.7 % of total
time. These frames represent calls to gemu kvim_mmu_page_fault() which is the time
spent handling two-dimensional page fault (hypervisor page fault) and the resulting
host OS page fault associated.

The graph is then split in two halves under gemu memory_region_write_accessor()
which represents 61.60 %. The first half is the callstack for gemu virtio _pci_device_
write() which represents 13% of the total time. This method is used to write to
PCIe MMIO configuration space of guest device from the host to trigger the inflation
command.

The other half is the callstack to gemu virtio _pci_notify _write () which accounts for
41.42 % of the total inflation time. This method handles reception of a notification
in the host of a guest write to the MMIO region. The method implements the host
side part of the inflation inside gemu. All the time-contribution is spent on calling
madvise() system call with DONT_NEED argument to perform freeing of pages.
Kernel side of madvise (32.43 %) spends its time in zap_page.range() with 13 %
spent in kernel MMU notification system and ensure coherence of EPT and
hypervisor page table and 13% in TLB shootdown.

Figure |8 shows three main contributions for the single-threaded inflation worker
in the guest under update_balloon size_func. First, __alloc_pages nodemask() ac-
counts for 46 % of the inflation time spent retrieving pages from buddy free lists
with expensive zeroing of pages (clear _page rep()).

Second, 18 % of inflation time is spent in MMIO write to report the number of pages
(iowrite32). This traps to qemu MMIO callbacks which explains the high cost.
Third, tell host() which performs the notification from the guest to the host rep-
resents 33 % of the inflation time.
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Deflate command

Figure [9] shows two independent contributions to CPU time during the mea-
surement. First, as in hypervisor side of balloon inflation, we can see that a single
thread is used over the 16 threads allocated for VM vCPUS. Second, the leftmost
part under gemu kvm_cpu_exec() for MMIO emulation accounts for 6 % of total
time. virtio _pci_device_write() which corresponds to MMIO writes to configura-
tion space accounts for 30% of total CPU time. Third, the rightmost part for
virtio _pci_notify write which implements the deflation inside qemu with a call to
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madvise(WILL_NEED) accounts for 32% of total CPU time.

Figure [10| shows two independent contributions. First, 41 % of time is spent in
MMIO write (iowrite32). Second, 56 % of the deflate time is spent dequeuing pages
from balloon list and freeing pages and notifying the host.

Paravirtual memory hotplug

Unplug
Icicle Graph
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kernel init..
clear page ..

Figure 11: Guest virtio-mem unplug ICycle Graph
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Figure 12: Hypervisor virtio-mem unplug ICycle Graph

Observation Figure and Figure [11] report CPU time contribution of 64 GiB
in hypervisor and guest OS respectively. We observe that guest OS performs
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monothreaded defragmentation in virtio _mem _run_wq workqueue with 4.2% of time
trying to physically offline and remove memory ( offline _and_remove_memory) and
95.7% in fake offlining (virtio mem_fake offline). Real offlinning and removal of
memory is split in offlining memory as a device (try_ offline _memory_block()) which
walks through memory blocks to offline them which accounts for 3.8% and removal
of pages from the buddy allocator (try_remove_memory()) which accounts for the
remaining 0.3%. In order to logically offline pages, virtio-mem needs to allocate
pages on the desired range. It isolates free pages in a freelist and split them in
order 0 pages before setting PG_Offline page flag. This allocation scheme leads to
page zeroing which accounts for 89% of the total unplug time. In Figure we
observe that page zeroing at guest level leads to expensive hypervisor EPT page
fault handling with page allocation also requiring to zero pages at different levels of
the callstack with 80% of page fault handling time spent in page zeroing.

Plug

Observation Figure [14]and Figure [L3| report CPU time contribution for hot-plug
operation of 64 GiB in hypervisor and guest OS respectively. It is important to keep
in mind that plug operation is very short compared to hotunplug. Moreover, the
scenario we are studying present the case where virtio-mem will need to physically
unplug vDIMMs and does not just perform logical offlining of vDIMMs. First,
we can see that hot-adding of memory in guest OS is performed in a workqueue
which spend 98% of the guest OS time onlining pages (online_pages()), 1.5% of time
adding pages to the buddy allocator (add_pages(), initiating memory devices and
physical memory mapping. During online, 33.5% of the time is spent in initializing
memmap by setting page refcount to 1 and marking pages as reserved (memmap_
init_zone()). Then, onlining checks if a zone contains holes (set_zone_contiguous())
which accounts for 17 % of the time. At this stage, pages are still isolated, thus
onlining calls undo_isolate_page_range() to activate allocation on these pages. This
method may spin trying to acquire the zone spinlock. In our case, we have observed
12% CPU time consumed in this method. Finally, 34.4 % is clearing reserved bit in
page metadata and dropping refcount to 0 and adding pages to buddy free-lists by
calls to free one_page(). Hypervisor time contributions are negligible to be reported.

Interpretation Most of the time is spent by guest OS zeroing pages when it tries
to isolate pages to logically set them as offline. Interestingly, guest zeroing leads
to hypervisor EPT fault handling with page allocation and additional page zeroing.
Hypervisor page zeroing is required to prevent information leakage to the guest.

183 Yohan Pipereau



Icicle Graph

<
- B
=

Figure 13: Guest virtio-mem plug ICycle Graph

Icicle Graph

I ———
3

CPU_1/KVM CPU_13/KVM CPU_14/KVM CPU_15/K. .CPU_2/KVM 10_.. qemu-system-x..
[unknown] - [unknown] [unknown] [unknawn] [unknown] [u.. [unknown]
[unknown] [u. . [unknown] [unknown] [unknown] [unknow. . [unknown] ppoll
[unknown] [u. . [unknawn] [unknown] [unknown] [unknaw. . [unknown] entry S..
g free g free g free g free g free do_sysc..
_GI__ ioctl __GI__ ioctl __GI__ ioctl _GI_.. _GI_ ioctl _ %64 5.,
entry SYSCAL.. entry SYSCALL 64 af. entry SYSCALL 64 ..entry .. entry SYSCALL.. do_sys..
do_syscall 64 do.. do_syscall 64 do_syscall 64 do_syscall 64 do_sys.. do_syscall 64 eve..
__x64_sys_io.. __x64_sys_ioctl __x64_sys_ioctl __x64_sys_ioctl _x64_.. _ x64 _sys ioc..
kvm_vecpu_ioc. . kvm_wvcpu_ioctl kvm_vcpu_ioctl kvm_vcpu ioctl kvm_vc.. kvm_vcpu_io
kvm_arch vecp.. kv.. kvm arch_vcpu_ioctl run kvm_arch_vcpu_ioctl..kvm_arch vcpu_ioc.. kvm a.. kvm_arch_vc. .
kvm_.. wv.. kvm_vcpu_blo. vmx_.. k.. kvm..vmx_h..v.. kvm_vcpu.. wv.. V..
Se.. k..schedule hoo v scha. k.. sched. .
oo __sched. . _ Boo <3 _ sch..
fi.. h.. -4

[CE
[u..
[u..
[u..
O
en..
do..
k..
kv..

Figure 14: Hypervisor virtio-mem plug ICycle Graph

Icicle Graph

U3 Co (R, G, CooCl GRS ensysten-ads
fonk.. [ lon..  fun.. (o L. Lojumkael o ko)
ok, [ on.. [un.. (. L. L. [BGSWSE e _clow .
.. Loln  un.. (- L. L. entrySISCALL 64 ofter hwirane  enry. en.,
ofi. g.of. gf. . g g GoSSEULGE s sysca,. o,
L T o o CGASySEaBVESE et
do.. d.do.  do.. G G . EBPEGREE
i o 0 e notifier invalidate range start  tlofin..  blkde..
Koo Kok ke Koo ke k. ke notifier inalidste ragestart  reless..  blkde.,
Moo kv ke koo k. ko femumephvarage . _fre. bl
k. W fondle b renge trunc..

kvm_unmap_rmapp

Figure 15: Hypervisor report ICycle Graph

184 Yohan Pipereau



Bibliography

D. Abramson et al. Intel Virtualization Technology for Directed 1/0. 2006.

ACPI Specification - System Address Map Interfaces. Jan. 2021. URL: https:
//uefi.org/htmlspecs/ACPI_Spec_6_4_html/15_System_Address_Map_
Interfaces/Sys_Address_Map_Interfaces.html.

Alexandru Agache et al. “Firecracker: Lightweight Virtualization for Server-
less Applications”. In: 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 419-434. 1SBN: 978-1-939133-13-7. URL: https://www.usenix.
org/conference/nsdi20/presentation/agache.

Anup Agarwal et al. “Unlocking unallocated cloud capacity for long, un-
interruptible workloads”. In: 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23). Boston, MA: USENIX Associ-
ation, Apr. 2023, pp. 457-478. 1SBN: 978-1-939133-33-5. URL: https://www.
usenix.org/conference/nsdi23/presentation/agarwal-anup.

Marcos K. Aguilera et al. “Designing Far Memory Data Structures: Think
Outside the Box”. In: Proceedings of the Workshop on Hot Topics in Oper-
ating Systems. HotOS ’19. Bertinoro, Italy: Association for Computing Ma-
chinery, 2019, pp. 120-126. 1SBN: 9781450367271. poI: 10.1145/3317550.
3321433 URL: https://doi.org/10.1145/3317550.3321433.

Shoaib Akram et al. “Write-Rationing Garbage Collection for Hybrid Mem-
ories”. In: Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2018. Philadelphia, PA,
USA: Association for Computing Machinery, 2018, pp. 62-77. 1SBN: 9781450356985.
DOIL: 10 .1145/3192366 . 3192392. URL: https://doi.org/10. 1145/
3192366.3192392.

Emmanuel Amaro et al. “Can Far Memory Improve Job Throughput?” In:
Proceedings of the Fifteenth Furopean Conference on Computer Systems. Eu-
roSys ’'20. Heraklion, Greece: Association for Computing Machinery, 2020.
ISBN: 9781450368827. DOI: |10.1145/3342195.3387522. URL: https://doi.
org/10.1145/3342195.3387522.

185


https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/15_System_Address_Map_Interfaces/Sys_Address_Map_Interfaces.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/15_System_Address_Map_Interfaces/Sys_Address_Map_Interfaces.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/15_System_Address_Map_Interfaces/Sys_Address_Map_Interfaces.html
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi23/presentation/agarwal-anup
https://www.usenix.org/conference/nsdi23/presentation/agarwal-anup
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3192366.3192392
https://doi.org/10.1145/3192366.3192392
https://doi.org/10.1145/3192366.3192392
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3342195.3387522

BIBLIOGRAPHY

8]

[17]

[18]

[19]

[20]

Nadav Amit, Dan Tsafrir, and Assaf Schuster. “VSwapper: A Memory Swap-
per for Virtualized Environments”. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems. ASPLOS ’14. Salt Lake City, Utah, USA: Association for Com-
puting Machinery, 2014, pp. 349-366. 1SBN: 9781450323055. DOI: 10.1145/
2541940.2541969. URL: https://doi.org/10.1145/2541940.2541969.

Nadav Amit et al. “VIOMMU: Efficient IOMMU Emulation”. In: Proceedings
of the 2011 USENIX Conference on USENIX Annual Technical Conference.
USENIXATC’11. Portland, OR: USENIX Association, 2011, p. 6.

An Introduction to the Intel ©)QuickPath Interconnect. 2009. URL: https://
www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-
introduction-paper.pdf.

Annotations on OpenWhisk assets. URL: https://github . com/apache/
openwhisk/blob/master/docs/annotations.md.

Apache Hadoop. URL: https://hadoop.apache.org/.
Apache Mesos. URL: https://mesos.apache.org/.

Andrea Arcangeli. AutoNUMA. May 2012. URL: https://mirrors.edge.
kernel . org/pub/linux/kernel /people/andrea/autonuma/autonuma _
bench-20120530. pdf.

autonuma: reduce cache footprint when scanning page tables. URL: https :
//git .kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?1d=a818f5363a0eba04bcff986c64c919d3f44b8017.

Vlastimil Babka. Overview of Memory Reclaim in the Current Upstream Ker-
nel. 2021. URL: https://1pc.events/event/11/contributions/896/
attachments/793/1493/slides-r2.pdf.

Vlastimil Babka. The hard work behind large physical memory allocations in
the kernel. 2023. URL: https://lpc.events/event/2/contributions/65/
attachments/15/171/slides-expanded.pdf.

D.H. Bailey et al. “The Nas Parallel Benchmarks”. In: Int. J. High Perform.
Comput. Appl. 5.3 (Sept. 1991), pp. 63-73. 1sSN: 1094-3420. DOI: [10.1177/
109434209100500306. URL: https://doi.org/10.1177/109434209100500306.

Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles. SOSP
’03. Bolton Landing, NY, USA: Association for Computing Machinery, 2003,
pp- 164-177. 1SBN: 1581137575. DOI: [10.1145/945445.945462. URL: https:
//doi.org/10.1145/945445.945462.

Adam Belay et al. “Dune: Safe User-level Access to Privileged CPU Fea-
tures”. In: 10th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 12). Hollywood, CA: USENIX Association, Oct. 2012,
pp. 335-348. ISBN: 978-1-931971-96-6. URL: https://www . usenix . org/
conference/osdil2/technical-sessions/presentation/belay.

186 Yohan Pipereau


https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/2541940.2541969
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://github.com/apache/openwhisk/blob/master/docs/annotations.md
https://github.com/apache/openwhisk/blob/master/docs/annotations.md
https://hadoop.apache.org/
https://mesos.apache.org/
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a818f5363a0eba04bcff986c64c919d3f44b8017
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a818f5363a0eba04bcff986c64c919d3f44b8017
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a818f5363a0eba04bcff986c64c919d3f44b8017
https://lpc.events/event/11/contributions/896/attachments/793/1493/slides-r2.pdf
https://lpc.events/event/11/contributions/896/attachments/793/1493/slides-r2.pdf
https://lpc.events/event/2/contributions/65/attachments/15/171/slides-expanded.pdf
https://lpc.events/event/2/contributions/65/attachments/15/171/slides-expanded.pdf
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay

BIBLIOGRAPHY

[21] Anton Beloglazov and Rajkumar Buyya. “Managing Overloaded Hosts for
Dynamic Consolidation of Virtual Machines in Cloud Data Centers under
Quality of Service Constraints”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 24.7 (2013), pp. 1366-1379. DOI1: 10.1109/TPDS.2012. 240.

[22] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Prince-
ton University, Jan. 2011.

[23] Matias Bjgrling et al. “Linux Block IO: Introducing Multi-Queue SSD Access
on Multi-Core Systems”. In: Proceedings of the 6th International Systems and
Storage Conference. SYSTOR ’13. Haifa, Israel: Association for Computing
Machinery, 2013. 1SBN: 9781450321167. DOI: |10 . 1145/2485732 . 2485740.
URL: https://doi.org/10.1145/2485732.2485740.

[24] D. L. Black et al. “Translation Lookaside Buffer Consistency: A Software
Approach”. In: Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASP-
LOS III. Boston, Massachusetts, USA: Association for Computing Machin-
ery, 1989, pp. 113-122. 1sBN: 0897913000. pOI: 10.1145/70082.68193. URL:
https://doi.org/10.1145/70082.68193.

[25]  Jeff Bonwick. “The Slab Allocator: An Object-Caching Kernel”. In: USENIX
Summer 1994 Technical Conference (USENIX Summer 1994 Technical Con-
ference). Boston, MA: USENIX Association, June 1994. URL: https://www.
usenix.org/conference/usenix-summer-1994-technical-conference/
slab-allocator-object-caching-kernel.

[26] Edouard Bugnion et al. “Disco: Running Commodity Operating Systems on
Scalable Multiprocessors”. In: ACM Trans. Comput. Syst. 15.4 (Nov. 1997),
pp. 412-447. 1ssN: 0734-2071. DOI: 10.1145/265924 .265930. URL: https:
//doi.org/10.1145/265924 .265930.

[27] Qingchao Cai et al. “Efficient Distributed Memory Management with RDMA
and Caching”. In: Proc. VLDB Endow. 11.11 (July 2018), pp. 1604-1617.
ISSN: 2150-8097. DO1: 10 . 14778 /3236187 . 3236209. URL: https://doi.
org/10.14778/3236187.3236209.

[28] Irina Calciu et al. “Rethinking Software Runtimes for Disaggregated Mem-
ory”. In: Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASP-
LOS ’21. Virtual, USA: Association for Computing Machinery, 2021, pp. 79—
92. 1SBN: 9781450383172. DOI: 10 .1145/3445814 . 3446713. URL: https:
//doi.org/10.1145/3445814.3446713,

[29] Blake Caldwell et al. “FluidMem: Full, Flexible, and Fast Memory Disag-
gregation for the Cloud”. In: 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). 2020, pp. 665—677. DOI: 10.1109/
ICDCS47774.2020.00090.

187 Yohan Pipereau


https://doi.org/10.1109/TPDS.2012.240
https://doi.org/10.1145/2485732.2485740
https://doi.org/10.1145/2485732.2485740
https://doi.org/10.1145/70082.68193
https://doi.org/10.1145/70082.68193
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/265924.265930
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.14778/3236187.3236209
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1109/ICDCS47774.2020.00090
https://doi.org/10.1109/ICDCS47774.2020.00090

BIBLIOGRAPHY

[30] Ho-Ren Chuang et al. “Aggregate VM: Why Reduce or Evict VM’s Re-
sources When You Can Borrow Them From Other Nodes?” In: Proceedings
of the Fighteenth European Conference on Computer Systems. EuroSys ’23.
Rome, Italy: Association for Computing Machinery, 2023, pp. 469-487. ISBN:
9781450394871. DOI: 10.1145/3552326.3587452. URL: https://doi.org/
10.1145/3552326.3587452.

[31] Christopher Clark et al. “Live Migration of Virtual Machines”. In: Proceed-
ings of the 2nd Conference on Symposium on Networked Systems Design
and Implementation - Volume 2. NSDI’05. USA: USENIX Association, 2005,
pp- 273-286.

[32] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. “Scalable
Address Spaces Using RCU Balanced Trees”. In: Proceedings of the Seven-
teenth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XVII. London, England, UK:
Association for Computing Machinery, 2012, pp. 199-210. 1SBN: 9781450307598.
DOI: 10 . 1145 /2150976 . 2150998, URL: https://doi.org/10. 1145/
2150976.2150998.

[33] Coherent Device Attribute Table (CDAT) Specification. Oct. 2020. URL: https:
//uefi.org/sites/default/files/resources/Coherent % 20Device},
20Attribute’20Table_1.01.pdf.

[34] Compute Express Link (CXL) Specification. Aug. 2022. URL: https://www.
computeexpresslink.org/.

[35] F.J. Corbaté and Project MAC (Massachusetts Institute of Technology). A
PAGING EXPERIMENT WITH THE MULTICS SYSTEM. Project MAC.
Massachusetts Institute of Technology, 1968. URL: https://books.google.
fr/books?id=5wDOQNwAACAAJ

[36] Jonathan Corbet. Multi-generational LRU: the next generation. 2021. URL:
https://lwn.net/Articles/856931/.

[37] Jonathan Corbet. Two memory-tiering patch sets. 2022. URL: https://lwn.
net/Articles/898766/.

[38] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linuz De-
vice Drivers, Third Edition. 3rd ed. O’Reilly Media, Inc., 2005. 1SBN: 9780596005900.

[39] Eli Cortez et al. “Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large Cloud Platforms”. In:
Proceedings of the 26th Symposium on Operating Systems Principles. SOSP
’17. Shanghai, China: Association for Computing Machinery, 2017, pp. 153~
167. 1SBN: 9781450350853. DOI: 10.1145/3132747 .3132772. URL: https:
//doi.org/10.1145/3132747.3132772.

[40] Grzegorz Czajkowski, Laurent Daynes, and Nathaniel Nystrom. “Code Shar-
ing among Virtual Machines”. In: ECOOP 2002 — Object-Oriented Program-
ming. Ed. by Boris Magnusson. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, pp. 155-177. 1SBN: 978-3-540-47993-2.

188 Yohan Pipereau


https://doi.org/10.1145/3552326.3587452
https://doi.org/10.1145/3552326.3587452
https://doi.org/10.1145/3552326.3587452
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2150976.2150998
https://uefi.org/sites/default/files/resources/Coherent%20Device%20Attribute%20Table_1.01.pdf
https://uefi.org/sites/default/files/resources/Coherent%20Device%20Attribute%20Table_1.01.pdf
https://uefi.org/sites/default/files/resources/Coherent%20Device%20Attribute%20Table_1.01.pdf
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://books.google.fr/books?id=5wDQNwAACAAJ
https://books.google.fr/books?id=5wDQNwAACAAJ
https://lwn.net/Articles/856931/
https://lwn.net/Articles/898766/
https://lwn.net/Articles/898766/
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772

BIBLIOGRAPHY

[41]

[44]

[45]

[46]

[49]

[50]

Michael D. Dahlin et al. “Cooperative Caching: Using Remote Client Memory
to Improve File System Performance”. In: First Symposium on Operating
Systems Design and Implementation (OSDI 94). Monterey, CA: USENIX
Association, Nov. 1994. URL: https://www.usenix.org/conference/osdi-
94 / cooperative - caching - using - remote - client - memory - improve -
file-system-performance.

William James Dally and Brian Patrick Towles. Principles and Practices
of Interconnection Networks. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2004. 1sSBN: 9780080497808.

Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-Efficient
and QoS-Aware Cluster Management”. In: Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’14. Salt Lake City, Utah, USA: Associa-
tion for Computing Machinery, 2014, pp. 127-144. 1SBN: 9781450323055. DOTI:
10.1145/2541940 . 2541941, URL: https://doi.org/10.1145/2541940.
2541941.

Umesh Deshpande et al. “MemX: Virtualization of Cluster-Wide Memory”.
In: Proceedings of the 2010 39th International Conference on Parallel Pro-
cessing. ICPP "10. USA: IEEE Computer Society, 2010, pp. 663-672. ISBN:
9780769541563. DOT: 10.1109/ICPP.2010.74. URL: https://doi.org/10.
1109/ICPP.2010.74.

Device Specification for Inter-VM shared memory device. URL: https://
github.com/qemu/gemu/blob/master/docs/specs/ivshmem-spec.txt.

Aleksandar Dragojevic¢ et al. “FaRM: Fast Remote Memory”. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, Apr. 2014, pp. 401-414. 1SBN: 978-1-
931971-09-6. URL: https://www.usenix.org/conference/nsdil4/technical-
sessions/dragojevi/7B%5C’ c/47D.

Alexander Duyck. mm: introduce Reported pages. 2020. URL: https://git.
kernel .org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
71d=36e66c554bbc6a9d17a229facara61693527b0bd.

Charles Elkan. “Using the Triangle Inequality to Accelerate K-Means”. In:
Proceedings of the Twentieth International Conference on International Con-
ference on Machine Learning. ICML’03. Washington, DC, USA: AAAI Press,
2003, pp. 147-153. 1SBN: 1577351894.

D. R. Engler, M. F. Kaashoek, and J. O’Toole. “Exokernel: An Operating
System Architecture for Application-Level Resource Management”. In: Pro-
ceedings of the Fifteenth ACM Symposium on Operating Systems Principles.
SOSP ’95. Copper Mountain, Colorado, USA: Association for Computing Ma-
chinery, 1995, pp. 251-266. 1SBN: 0897917154. DOI: 10.1145/224056.224076.
URL: https://doi.org/10.1145/224056.224076.

Dan Ernst. Follow the Data: Memory-Centric Designs for Modern Datacen-
ters. Feb. 2023. URL: https://www.youtube.com/watch?v=UAOpLW3QG5c.

189 Yohan Pipereau


https://www.usenix.org/conference/osdi-94/cooperative-caching-using-remote-client-memory-improve-file-system-performance
https://www.usenix.org/conference/osdi-94/cooperative-caching-using-remote-client-memory-improve-file-system-performance
https://www.usenix.org/conference/osdi-94/cooperative-caching-using-remote-client-memory-improve-file-system-performance
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/ICPP.2010.74
https://doi.org/10.1109/ICPP.2010.74
https://doi.org/10.1109/ICPP.2010.74
https://github.com/qemu/qemu/blob/master/docs/specs/ivshmem-spec.txt
https://github.com/qemu/qemu/blob/master/docs/specs/ivshmem-spec.txt
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%7B%5C'c%7D
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%7B%5C'c%7D
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=36e66c554b5c6a9d17a229faca7a61693527b0bd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=36e66c554b5c6a9d17a229faca7a61693527b0bd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=36e66c554b5c6a9d17a229faca7a61693527b0bd
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://www.youtube.com/watch?v=UA0pLW3QG5c

BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Jason Evans. “A Scalable Concurrent malloc(3) Implementation for FreeBSD”.
In: (Jan. 2006).

Joshua Fried et al. “Caladan: Mitigating Interference at Microsecond Timescales”.
In: 14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, Nov. 2020, pp. 281-297. ISBN: 978-
1-939133-19-9. URL: https://www . usenix . org/ conference / 0sdi20 /
presentation/fried.

Yaosheng Fu, Tri M. Nguyen, and David Wentzlaff. “Coherence Domain Re-
striction on Large Scale Systems”. In: Proceedings of the 48th International
Symposium on Microarchitecture. MICRO-48. Waikiki, Hawaii: Association
for Computing Machinery, 2015, pp. 686-698. 1SBN: 9781450340342. DOI:
10.1145/2830772.2830832. URL: https://doi.org/10.1145/2830772.
2830832.

Alexander Fuerst et al. “Memory-Harvesting VMs in Cloud Platforms”. In:
Proceedings of the 27th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS "22. Lau-
sanne, Switzerland: Association for Computing Machinery, 2022, pp. 583—
594. 1SBN: 9781450392051. DOT: 10.1145/3503222.3507725. URL: https:
//doi.org/10.1145/3503222.3507725.

Paul A. Games and John F. Howell. “Pairwise Multiple Comparison Pro-
cedures with Unequal N’s and/or Variances: A Monte Carlo Study”. In:
Journal of Educational Statistics 1.2 (1976), pp. 113-125. po1: 10 . 3102/
10769986001002113. eprint: https://doi.org/10.3102/10769986001002113.
URL: https://doi.org/10.3102/10769986001002113.

Gregory R. Ganger et al. “Fast and Flexible Application-Level Networking
on Exokernel Systems”. In: ACM Trans. Comput. Syst. 20.1 (Feb. 2002),
pp- 49-83. 18sN: 0734-2071. DOI: 10.1145/505452 . 505455. URL: https :
//doi.org/10.1145/505452.505455.

Peter X. Gao et al. “Network Requirements for Resource Disaggregation”. In:
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, Nov. 2016, pp. 249-264.
ISBN: 978-1-931971-33-1. URL: https://www . usenix . org/conference/
osdil6/technical-sessions/presentation/gao.

Mel Gorman. Foundation for automatic NUMA balancing. 2021. URL: https:
//lun.net/Articles/523065/.

Mel Gorman. Understanding the Linux Virtual Memory Manager. USA: Pren-
tice Hall PTR, 2004. 1SBN: 0131453483.

Donghyun Gouk et al. “Direct Access, High-Performance Memory Disag-
gregation with DirectCXL”. In: 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22). Carlsbad, CA: USENIX Association, July 2022,
pp. 287-294. 1SBN: 978-1-939133-29-65. URL: https://www.usenix.org/
conference/atc22/presentation/gouk.

190 Yohan Pipereau


https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://doi.org/10.1145/2830772.2830832
https://doi.org/10.1145/2830772.2830832
https://doi.org/10.1145/2830772.2830832
https://doi.org/10.1145/3503222.3507725
https://doi.org/10.1145/3503222.3507725
https://doi.org/10.1145/3503222.3507725
https://doi.org/10.3102/10769986001002113
https://doi.org/10.3102/10769986001002113
https://doi.org/10.3102/10769986001002113
https://doi.org/10.3102/10769986001002113
https://doi.org/10.1145/505452.505455
https://doi.org/10.1145/505452.505455
https://doi.org/10.1145/505452.505455
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://lwn.net/Articles/523065/
https://lwn.net/Articles/523065/
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/atc22/presentation/gouk

BIBLIOGRAPHY

[61]

[62]

[64]

[65]

[66]

[67]

[68]

[69]

Juncheng Gu et al. “Efficient Memory Disaggregation with Infiniswap”. In:
14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). Boston, MA: USENIX Association, Mar. 2017, pp. 649—667. ISBN:
978-1-931971-37-9. URL: https://www.usenix.org/conference/nsdil7/
technical-sessions/presentation/gu.

Ori Hadary et al. “Protean: VM Allocation Service at Scale”. In: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 845-861. ISBN: 978-1-939133-19-9. URL:
https://www.usenix.org/conference/osdi20/presentation/hadary.

Thomas Haynes. Network File System (NFS) Version 4 Minor Version 2
Protocol. RFC 7862. Nov. 2016. DOI: 10.17487 /RFC7862. URL: https://
www.rfc-editor.org/info/rfc7862.

John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-
titative Approach, 5th Edition. Morgan Kaufmann, 2012. 1SBN: 978-0-12-
383872-8.

Benedict Herzog et al. “The Price of Meltdown and Spectre: Energy Overhead
of Mitigations at Operating System Level”. In: Proceedings of the 1/th Furo-
pean Workshop on Systems Security. EuroSec '21. Online, United Kingdom:
Association for Computing Machinery, 2021, pp. 8-14. 1SBN: 9781450383370.
DOI: 10 . 1145/ 3447852 . 3458721, URL: https://doi.org/10. 1145/
3447852.3458721.

David Hildenbrand. virtio-mem: Paravirtualized Memory. 2018. URL: https:
/ /eventsl19 . linuxfoundation . org/wp - content /uploads /2017 /12/
virtio-mem—-Paravirtualized—-Memory-David-Hildenbrand-Red-Hat-
1.pdf.

David Hildenbrand and Martin Schulz. “Virtio-Mem: Paravirtualized Mem-
ory Hot(Un)Plug”. In: Proceedings of the 17th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. VEE 2021.
Virtual, USA: Association for Computing Machinery, 2021, pp. 1-14. ISBN:
9781450383943. DOI: 10.1145/3453933.3454010. URL: https://doi.org/
10.1145/3453933.3454010.

Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. “Post-Copy Live
Migration of Virtual Machines”. In: SIGOPS Oper. Syst. Rev. 43.3 (July
2009), pp. 14-26. 1ssN: 0163-5980. DOI: 10.1145/1618525. 1618528, URL:
https://doi.org/10.1145/1618525.1618528.

Takahiro Hirofuchi and Ryousei Takano. “RAMinate: Hypervisor-Based Vir-
tualization for Hybrid Main Memory Systems”. In: Proceedings of the Seventh
ACM Symposium on Cloud Computing. SoOCC ’16. Santa Clara, CA, USA: As-
sociation for Computing Machinery, 2016, pp. 112-125. 1SBN: 9781450345255.
DOIL: 10 . 1145 /2987550 . 2987570. URL: https://doi.org/10. 1145/
2987550.2987570.

Naoya Horiguchi. hugetlb: hugepage migration core. 2010. URL: https://git.
kernel . org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-
unstable&i1d=290408d4a250021099%efeee7b6ab778d431154d6.

191 Yohan Pipereau


https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi20/presentation/hadary
https://doi.org/10.17487/RFC7862
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc7862
https://doi.org/10.1145/3447852.3458721
https://doi.org/10.1145/3447852.3458721
https://doi.org/10.1145/3447852.3458721
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/virtio-mem-Paravirtualized-Memory-David-Hildenbrand-Red-Hat-1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/virtio-mem-Paravirtualized-Memory-David-Hildenbrand-Red-Hat-1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/virtio-mem-Paravirtualized-Memory-David-Hildenbrand-Red-Hat-1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/virtio-mem-Paravirtualized-Memory-David-Hildenbrand-Red-Hat-1.pdf
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/1618525.1618528
https://doi.org/10.1145/1618525.1618528
https://doi.org/10.1145/2987550.2987570
https://doi.org/10.1145/2987550.2987570
https://doi.org/10.1145/2987550.2987570
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=290408d4a25002f099efeee7b6a5778d431154d6
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=290408d4a25002f099efeee7b6a5778d431154d6
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=290408d4a25002f099efeee7b6a5778d431154d6

BIBLIOGRAPHY

[71] Intel Rack Scale Design (Intel RSD). Nov. 2016. URL: https://www.intel.
fr/content/www/fr/fr/architecture-and-technology/rack-scale-
design-overview.html.

[72] Intel®) 64 and IA-32 Architectures Software Developer’s Manual. Volume
3C: System Programming Guide, Part 3. URL: https://www.intel.com/
content / dam/ www / public /us/en/documents /manuals /64 -ia-32-
architectures-software-developer-vol-3c-part-3-manual.pdf.

[73] iSCSI Extensions for RDMA Specification (Version 1.0). July 2003. URL:
http://www.rdmaconsortium.org/home/draft-ko-iwarp-iser-v1.PDF.

[74] Joseph Izraelevitz et al. Basic Performance Measurements of the Intel Optane
DC' Persistent Memory Module. 2019. DOI: 10 .48550/ARXIV. 1903.05714.
URL: https://arxiv.org/abs/1903.05714.

[75] Joseph Izraelevitz et al. Basic Performance Measurements of the Intel Optane
DC' Persistent Memory Module. 2019. DOI: 10.48550/ARXIV.1903.05714.
URL: https://arxiv.org/abs/1903.05714.

[76] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. 1st. Chapman &
Hall/CRC, 2011. 1sBN: 1420082795.

[77] Sangeetha Abdu Jyothi et al. “Morpheus: Towards Automated SLOs for
Enterprise Clusters”. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX Associa-
tion, Nov. 2016, pp. 117-134. 1SBN: 978-1-931971-33-1. URL: https://www.
usenix . org/conference/osdil6/technical-sessions/presentation/
jyothi.
[78] Aneesh Kumar K.V. mm/demotion: add support for explicit memory tiers.
2022. URL: https://git.kernel.org/pub/scm/linux/kernel/git/akpm/
mm.git/commit/?h=mm-unstable&id=7b3ef2e6a64440924ecbccbb6d3f8b7966558cE66.

[79] M. Frans Kaashoek et al. “Application Performance and Flexibility on Ex-
okernel Systems”. In: Proceedings of the Sixteenth ACM Symposium on Op-
erating Systems Principles. SOSP ’'97. Saint Malo, France: Association for
Computing Machinery, 1997, pp. 52-65. 1SBN: 0897919165. poI1: 10.1145/
268998.266644. URL: https://doi.org/10.1145/268998.266644.

[80] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “Design Guidelines
for High Performance RDMA Systems”. In: Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference. USENIX ATC ’16. Den-
ver, CO, USA: USENIX Association, 2016, pp. 437—450. ISBN: 9781931971300.

[81] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “Using RDMA Effi-
ciently for Key-Value Services”. In: Proceedings of the 201/ ACM Conference
on SIGCOMM. SIGCOMM ’14. Chicago, Illinois, USA: Association for Com-
puting Machinery, 2014, pp. 295-306. 1SBN: 9781450328364. poOI: 10.1145/
2619239.2626299. URL: https://doi.org/10.1145/2619239.2626299.

192 Yohan Pipereau


https://www.intel.fr/content/www/fr/fr/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.fr/content/www/fr/fr/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.fr/content/www/fr/fr/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
http://www.rdmaconsortium.org/home/draft-ko-iwarp-iser-v1.PDF
https://doi.org/10.48550/ARXIV.1903.05714
https://arxiv.org/abs/1903.05714
https://doi.org/10.48550/ARXIV.1903.05714
https://arxiv.org/abs/1903.05714
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=7b3ef2e6a64440924ecbcc5b6d3f8b7966558c66
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=7b3ef2e6a64440924ecbcc5b6d3f8b7966558c66
https://doi.org/10.1145/268998.266644
https://doi.org/10.1145/268998.266644
https://doi.org/10.1145/268998.266644
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299

BIBLIOGRAPHY

[82] David Kanter. The Common System Interface: Intel’s Future Interconnect.
Aug. 2007. URL: https : //www . realworldtech . com/ common - system -
interface.

[83] Kim Keeton. The Machine. HP. May 2016. URL: https://www . youtube .
com/watch?v=0EQYOq4EykY.

[84] Alexey Khrabrov et al. “JITServer: Disaggregated Caching JIT Compiler
for the JVM in the Cloud”. In: 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22). Carlsbad, CA: USENIX Association, July 2022,
pp. 869-884. 1SBN: 978-1-939133-29-62. URL: https://www.usenix .org/
conference/atc22/presentation/khrabrov.

[85] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. “Exploring the Design
Space of Page Management for Multi-Tiered Memory Systems”. In: 2021
USENIX Annual Technical Conference (USENIX ATC 21). 2021, pp. 715—
728.

[86] Cristian Klein et al. “Brownout: Building More Robust Cloud Applications”.
In: Proceedings of the 36th International Conference on Software Engineering.
ICSE 2014. Hyderabad, India: Association for Computing Machinery, 2014,
pp. 700-711. 1SBN: 9781450327565. DOI: |10.1145/2568225 . 2568227. URL:
https://doi.org/10.1145/2568225.2568227.

[87] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. USA: Addison Wesley Longman Publishing Co.,
Inc., 1997. 1SBN: 0201896834.

[88] Matthew J. Koop et al. “Performance Analysis and Evaluation of PCle 2.0
and Quad-Data Rate InfiniBand”. In: 2008 16th IEEE Symposium on High
Performance Interconnects. 2008, pp. 85-92. DOI: [10.1109/H0TI.2008. 26.

[89] Mohan Kumar Kumar et al. “LATR: Lazy Translation Coherence”. In: Pro-
ceedings of the Twenty-Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS "18. Williams-
burg, VA, USA: Association for Computing Machinery, 2018, pp. 651-664.
ISBN: 9781450349116. DOI: 10.1145/3173162.3173198. URL: https://doi.
org/10.1145/3173162.3173198.

[90] Seung-seob Lee et al. “MIND: In-Network Memory Management for Disaggre-
gated Data Centers”. In: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. SOSP ’21. Virtual Event, Germany: Asso-
ciation for Computing Machinery, 2021, pp. 488-504. 1SBN: 9781450387095.
DOIL: 10 .1145/3477132 . 3483561. URL: https://doi.org/10. 1145/
3477132.3483561.

[91] Anatole Lefort et al. “J-NVM: Off-Heap Persistent Objects in Java”. In:
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. SOSP ’21. Virtual Event, Germany: Association for Computing
Machinery, 2021, pp. 408-423. 1SBN: 9781450387095. DO1:110.1145/3477132.
3483579, URL: https://doi.org/10.1145/3477132.3483579.

193 Yohan Pipereau


https://www.realworldtech.com/common-system-interface
https://www.realworldtech.com/common-system-interface
https://www.youtube.com/watch?v=0EQY0q4EykY
https://www.youtube.com/watch?v=0EQY0q4EykY
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1109/HOTI.2008.26
https://doi.org/10.1145/3173162.3173198
https://doi.org/10.1145/3173162.3173198
https://doi.org/10.1145/3173162.3173198
https://doi.org/10.1145/3477132.3483561
https://doi.org/10.1145/3477132.3483561
https://doi.org/10.1145/3477132.3483561
https://doi.org/10.1145/3477132.3483579
https://doi.org/10.1145/3477132.3483579
https://doi.org/10.1145/3477132.3483579

BIBLIOGRAPHY

[92] Ilya Lesokhin et al. “Page Fault Support for Network Controllers”. In: Pro-
ceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS *17. Xi’an,
China: Association for Computing Machinery, 2017, pp. 449-466. 1ISBN: 9781450344654.
DOIL: 10 . 1145 /3037697 . 3037710. URL: https://doi.org/10.1145/
3037697.3037710.

[93] Michel Lespinasse. Speculative page faults. Apr. 2021. URL: https://lwn.
net/Articles/851853/.

[94] G. Ley and D. Phipps. “Design and analysis of a synchronous dram memory
module”. In: IEEE International Workshop on Memory Technology, Design
and Testing, 1996, pp. 72-78. DOI: 10.1109/MTDT. 1996 .782495.

[95] Huaicheng Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms. 2022. DOI: |10.48550/ARXIV.2203.00241. URL: https://arxiv.
org/abs/2203.00241/

[96] Kai Li. “IVY: A Shared Virtual Memory System for Parallel Computing”.
In: Proceedings of the International Conference on Parallel Processing, ICPP
‘88, The Pennsylvania State University, University Park, PA, USA, August
1988. Volume 2: Software. Pennsylvania State University Press, 1988, pp. 94—
101.

[97] Heiner Litz et al. “RAIL: Predictable, Low Tail Latency for NVMe Flash”.
In: ACM Trans. Storage 18.1 (Jan. 2022). 1SSN: 1553-3077. DOI: [10. 1145/
3465406, URL: https://doi.org/10.1145/3465406.

[98] David Lo et al. “Heracles: Improving Resource Efficiency at Scale”. In: Pro-
ceedings of the 42nd Annual International Symposium on Computer Archi-
tecture. ISCA ’15. Portland, Oregon: Association for Computing Machinery,
2015, pp. 450-462. 1SBN: 9781450334020. DOL: [10 . 1145/2749469 . 2749475|
URL: https://doi.org/10.1145/2749469.2749475.

[99] Gabriel H. Loh. “3D-Stacked Memory Architectures for Multi-Core Proces-
sors”. In: Proceedings of the 35th Annual International Symposium on Com-
puter Architecture. ISCA ’08. USA: IEEE Computer Society, 2008, pp. 453~
464. 1SBN: 9780769531748. DOI: 10.1109/ISCA.2008.15. URL: https://
doi.org/10.1109/ISCA.2008.15.

[100] Maxime Lorrillere et al. “Puma: Pooling Unused Memory in Virtual Machines
for I/O Intensive Applications”. In: Proceedings of the 8th ACM International
Systems and Storage Conference. SYSTOR ’15. Haifa, Israel: Association for
Computing Machinery, 2015. 1SBN: 9781450336079. DOT: 10.1145/2757667 .
2757669. URL: https://doi.org/10.1145/2757667.2757669.

[101]  Lustre distributed filesystem. URL: git://git.whamcloud.com/fs/lustre-
release.git (visited on 02/28/2023).

[102] Shirley Ma. vhost: vhost TX zero-copy support. 2011. URL: https://git.
kernel . org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-
unstable&id=bab632d69ee48a106e779b60ccO0ladfe80a72807.

194 Yohan Pipereau


https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3037697.3037710
https://lwn.net/Articles/851853/
https://lwn.net/Articles/851853/
https://doi.org/10.1109/MTDT.1996.782495
https://doi.org/10.48550/ARXIV.2203.00241
https://arxiv.org/abs/2203.00241
https://arxiv.org/abs/2203.00241
https://doi.org/10.1145/3465406
https://doi.org/10.1145/3465406
https://doi.org/10.1145/3465406
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1109/ISCA.2008.15
https://doi.org/10.1109/ISCA.2008.15
https://doi.org/10.1109/ISCA.2008.15
https://doi.org/10.1145/2757667.2757669
https://doi.org/10.1145/2757667.2757669
https://doi.org/10.1145/2757667.2757669
git://git.whamcloud.com/fs/lustre-release.git
git://git.whamcloud.com/fs/lustre-release.git
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=bab632d69ee48a106e779b60cc01adfe80a72807
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=bab632d69ee48a106e779b60cc01adfe80a72807
https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git/commit/?h=mm-unstable&id=bab632d69ee48a106e779b60cc01adfe80a72807

BIBLIOGRAPHY

[103]

[104]

[105]
[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Steffen Maass et al. “ECOTLB: Eventually Consistent TLBs”. In: ACM
Trans. Archit. Code Optim. 17.4 (Sept. 2020). 1SSN: 1544-3566. DOI: 10 .
1145/3409454. URL: https://doi.org/10.1145/3409454.

Hasan Al Maruf et al. “TPP: Transparent Page Placement for CXL-Enabled
Tiered Memory”. In: (2022). DOI: 10 . 48550 / ARXIV . 2206 . 02878. URL:
https://arxiv.org/abs/2206.02878.

Message Passing Interface. URL: https://www.mpi-forum.org/.

Samuel K. Moore. AMD CEQ: The Next Challenge Is Energy Efficiency. A
500-megawatt supercomputer is “probably too much”. Feb. 2023. URL: https:
//spectrum. ieee.org/amd-eyes-supercomputer-efficiency-gains.

Djob Mvondo et al. “OFC: An Opportunistic Caching System for FaaS Plat-
forms”. In: Proceedings of the Sixteenth Furopean Conference on Computer
Systems. EuroSys '21. Online Event, United Kingdom: Association for Com-
puting Machinery, 2021, pp. 228-244. 1SBN: 9781450383349. po1: 10.1145/
3447786 .3456239. URL: https://doi.org/10.1145/3447786.3456239.

Rolf Neugebauer et al. “Understanding PCle Performance for End Host Net-
working”. In: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. SIGCOMM ’18. Budapest, Hungary: Asso-
ciation for Computing Machinery, 2018, pp. 327-341. 1SBN: 9781450355674.
DOI: 10 . 1145 /3230543 . 3230560. URL: https://doi.org/10.1145/
3230543 .3230560.

NFS: Network File System Protocol specification. RFC 1094. Mar. 1989. DOTI:
10.17487/RFC1094. URL: https://www.rfc-editor.org/info/rfc1094.

Tu Dinh Ngoc et al. “Mitigating Vulnerability Windows with Hypervisor
Transplant”. In: Proceedings of the Sixteenth European Conference on Com-
puter Systems. FuroSys ’21. Online Event, United Kingdom: Association for
Computing Machinery, 2021, pp. 162-177. 1SBN: 9781450383349. DOI: 10 .
1145 /3447786 . 3456235. URL: https://doi.org/10. 1145/ 3447786 .
3456235.

Vlad Nitu et al. “Welcome to Zombieland: Practical and Energy-Efficient
Memory Disaggregation in a Datacenter”. In: Proceedings of the Thirteenth
FuroSys Conference. EuroSys "18. Porto, Portugal: Association for Comput-
ing Machinery, 2018. 1SBN: 9781450355841. DOI:|10.1145/3190508.3190537.
URL: https://doi.org/10.1145/3190508.3190537.

NVM EzpressTM over Fabrics Revision 1.1a. July 2021. URL: https://
nvmexpress . org / wp - content /uploads /NVMe - over - Fabrics-1. la-
2021.07.12-Ratified.pdf.

Takeshi Okuda et al. “A Remote Swap Management Framework in a Virtual
Machine Cluster”. In: 2010 IEEE 3rd International Conference on Cloud
Computing. 2010, pp. 546-547. poI: 10.1109/CLOUD.2010.13.

Open Source Serverless Cloud Platform. URL: https://openwhisk.apache.
org/.

195 Yohan Pipereau


https://doi.org/10.1145/3409454
https://doi.org/10.1145/3409454
https://doi.org/10.1145/3409454
https://doi.org/10.48550/ARXIV.2206.02878
https://arxiv.org/abs/2206.02878
https://www.mpi-forum.org/
https://spectrum.ieee.org/amd-eyes-supercomputer-efficiency-gains
https://spectrum.ieee.org/amd-eyes-supercomputer-efficiency-gains
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.17487/RFC1094
https://www.rfc-editor.org/info/rfc1094
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1145/3190508.3190537
https://doi.org/10.1145/3190508.3190537
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://doi.org/10.1109/CLOUD.2010.13
https://openwhisk.apache.org/
https://openwhisk.apache.org/

BIBLIOGRAPHY

[115]
[116]

[117)

[118]

[119]
[120]

[121]

[122]

[123]

[124]

[125]

OpenStack Swift. URL: https://github.com/openstack/swift.

SeongJae Park, Yunjae Lee, and Heon Y. Yeom. “Profiling Dynamic Data
Access Patterns with Controlled Overhead and Quality”. In: Proceedings of
the 20th International Middleware Conference Industrial Track. Middleware
'19. Davis, CA, USA: Association for Computing Machinery, 2019, pp. 1-
7. I1SBN: 9781450370417. poI: 10 . 1145 /3366626 . 3368125. URL: https :
//doi.org/10.1145/3366626.3368125.

Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Jour-
nal of machine learning research 12.0ct (2011), pp. 2825-2830.

Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Vir-
tualizable Third Generation Architectures”. In: Commun. ACM 17.7 (July
1974), pp. 412-421. 18SN: 0001-0782. DoOI: [10. 1145/361011 . 361073. URL:
https://doi.org/10.1145/361011.361073.

Proxmozx. URL: https://proxmox.com/en/.

Kashifuddin Qazi and Steven Romero. “Remote Memory Swapping for Vir-
tual Machines in Commercial Infrastructure-as-a-Service”. In: 2019 4th Inter-
national Conference on Computing, Communications and Security (ICCCS).
2019, pp. 1-8. DOI: [10.1109/CCCS. 2019 . 8888069.

QEMU, A generic and open source machine emulator and virtualizer. URL:
https://www.qemu.org/.

Amanda Raybuck et al. “HeMem: Scalable Tiered Memory Management for
Big Data Applications and Real NVM”. In: Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles. SOSP 21. Virtual Event,
Germany: Association for Computing Machinery, 2021, pp. 392-407. 1SBN:
9781450387095. DOI: 10.1145/3477132.3483550. URL: https://doi.org/
10.1145/3477132.3483550.

Charles Reiss et al. “Heterogeneity and Dynamicity of Clouds at Scale: Google
Trace Analysis”. In: Proceedings of the Third ACM Symposium on Cloud
Computing. SoCC ’12. San Jose, California: Association for Computing Ma-
chinery, 2012. 1SBN: 9781450317610. DOI: 10.1145/2391229.2391236. URL:
https://doi.org/10.1145/2391229.2391236.

Cliff Robinson. NVIDIA H100 Hopper Details at HC34 as it Waits for Next-
Gen CPUs. Aug. 2022. URL: https://www.servethehome . com/nvidia-
h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/.
Zhenyuan Ruan et al. “AIFM: High-Performance, Application-Integrated Far
Memory”. In: 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, Nov. 2020, pp. 315-332.
ISBN: 978-1-939133-19-9. URL: https://www . usenix . org/conference/
0sdi20/presentation/ruan.

196 Yohan Pipereau


https://github.com/openstack/swift
https://doi.org/10.1145/3366626.3368125
https://doi.org/10.1145/3366626.3368125
https://doi.org/10.1145/3366626.3368125
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://proxmox.com/en/
https://doi.org/10.1109/CCCS.2019.8888069
https://www.qemu.org/
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan

BIBLIOGRAPHY

[126] Adam Ruprecht et al. “VM Live Migration At Scale”. In: Proceedings of the
14th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments. VEE '18. Williamsburg, VA, USA: Association for Com-
puting Machinery, 2018, pp. 45-56. 1SBN: 9781450355797. DOI: |10 . 1145/
3186411.3186415. URL: https://doi.org/10.1145/3186411.3186415.

[127] Marta Rybczynska. Introducing maple trees. Feb. 2021. URL: https://lwn.
net/Articles/845507/.

[128] Solmaz Salehian and Yonghong Yan. “Evaluation of Knight Landing High
Bandwidth Memory for HPC Workloads”. In: Proceedings of the Seventh
Workshop on Irreqular Applications: Architectures and Algorithms. TA3’17.
Denver, CO, USA: Association for Computing Machinery, 2017. 1ISBN: 9781450351362.
DOIL: 10 . 1145 /3149704 . 3149766. URL: https://doi.org/10.1145/
3149704.3149766.

[129] Mitsuhisa Sato et al. “Co-Design for A64FX Manycore Processor and ”Fu-
gaku””. In: SC20: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 2020, pp. 1-15. DOI: 10. 1109/
SC41405.2020.00051.

[130] Martin Schwidefsky et al. “Collaborative Memory Management in Hosted
Linux Environments”. In: (Jan. 2006).

[131] Sai Sha et al. “VTMM: Tiered Memory Management for Virtual Machines”.
In: Proceedings of the Eighteenth European Conference on Computer Sys-
tems. FuroSys '23. Rome, Italy: Association for Computing Machinery, 2023,
pp. 283-297. 1SBN: 9781450394871. DOI: |10.1145/3552326 . 3587449. URL:
https://doi.org/10.1145/3552326.3587449.

[132] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. “Resource Defla-
tion: A New Approach For Transient Resource Reclamation”. In: Proceed-
ings of the Fourteenth FuroSys Conference 2019. EuroSys ’19. Dresden, Ger-
many: Association for Computing Machinery, 2019. 1SBN: 9781450362818.
DOI: 10 . 1145 /3302424 . 3303945. URL: https://doi.org/10. 1145/
3302424 .3303945.

[133] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In: 2010
IEEFE 26th Symposium on Mass Storage Systems and Technologies (MSST).
2010, pp. 1-10. pOI1: 10.1109/MSST.2010.5496972.

[134] Kalesh Singh. Android MGLRU FEvaluation. 2022. URL: https : // 1lpc .
events/event/16/contributions/1336/attachments/972/1895/Androidy,
20MGLRU%,20Evaluation. pdf.

[135]  Single Root 1/0 Virtualization and Sharing Specification Revision 1.0. 2007.
URL: https://pcisig. com/single-root-io-virtualization- and-
sharing-specification-revision—-10.

[136] John D. Slingwine and Paul E. McKenney. Apparatus and method for achiev-
ing reduced overhead mutual exclusion and maintaining coherency in a mul-
tiprocessor system wutilizing execution history and thread monitoring. 1993.
URL: https://patents.google.com/patent/US5442758.

197 Yohan Pipereau


https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3186411.3186415
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
https://doi.org/10.1145/3149704.3149766
https://doi.org/10.1145/3149704.3149766
https://doi.org/10.1145/3149704.3149766
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.1145/3552326.3587449
https://doi.org/10.1145/3552326.3587449
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1109/MSST.2010.5496972
https://lpc.events/event/16/contributions/1336/attachments/972/1895/Android%20MGLRU%20Evaluation.pdf
https://lpc.events/event/16/contributions/1336/attachments/972/1895/Android%20MGLRU%20Evaluation.pdf
https://lpc.events/event/16/contributions/1336/attachments/972/1895/Android%20MGLRU%20Evaluation.pdf
https://pcisig.com/single-root-io-virtualization-and-sharing-specification-revision-10
https://pcisig.com/single-root-io-virtualization-and-sharing-specification-revision-10
https://patents.google.com/patent/US5442758

BIBLIOGRAPHY

[137]

[138]

[139)]

[140]

[141]
142]

[143)]

144]

[145]

[146]

[147]

[148]

[149]

Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory
Consistency and Cache Coherence. 1st. Morgan & Claypool Publishers, 2011.
ISBN: 1608455645.

Michael Stonebraker. “The Case for Shared Nothing”. In: International Work-
shop on High-Performance Transaction Systems, HPTS 1985, Asilomar Con-
ference Center, Pacific, Grove, California, 23-25 September 1985. 1985.

Sayantan Sur et al. “Performance Analysis and Evaluation of Mellanox Con-
nectX InfiniBand Architecture with Multi-Core Platforms”. In: 15th Annual
IEEE Symposium on High-Performance Interconnects (HOTI 2007). 2007,
pp. 125-134. por: [10.1109/HOTI . 2007 . 16!

Billy Tallis. Gen-Z Interconnect Core Specification 1.0 Published. Feb. 2018.
URL: https://www.anandtech. com/show/12431/genz-interconnect -
core-specification-10-published.

The CCIX Consortium. URL: https://www.ccixconsortium. com/.

The Machine: A new kind of computer. Sept. 2014. URL: https://www.hpl.
hp.com/research/systems-research/themachine/.

Kun Tian et al. “ColOMMU: A Virtual IOMMU with Cooperative DMA
Buffer Tracking for Efficient Memory Management in Direct 1/O”. In: Pro-
ceedings of the 2020 USENIX Conference on Usenixz Annual Technical Con-
ference. USENIX ATC’20. USA: USENIX Association, 2020. 1SBN: 978-1-
939133-14-4.

Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Mod-
els. 2023. arXiv: 2302.13971 [cs.CL].

Shin-Yeh Tsai and Yiying Zhang. “LITE Kernel RDMA Support for Dat-
acenter Applications”. In: Proceedings of the 26th Symposium on Operating
Systems Principles. SOSP "17. Shanghai, China: Association for Computing
Machinery, 2017, pp. 306-324. 1SBN: 9781450350853. DOI: 10.1145/3132747 .
3132762, URL: https://doi.org/10.1145/3132747.3132762.

David Hildenbrand & Michael S. Tsirkin. Virtio-(balloon—pmem—mem):
Managing Guest Memory. 2020. URL: https://static.sched.com/hosted_
files/kvmforum2020/8e/KVM720Forumy2020207%20Virtio-7%28balloonj,
20pmem’20mem729%20Managing/,20Guest’%20Memory . pdf.

Michael S. Tsirkin and Cornelia Huck. Virtual /0 Device (VIRTIO) Version
1.1. Apr. 2019. URL: https://docs.oasis-open.org/virtio/virtio/vl.
1/cs01/virtio-v1.1-cs01.html..

Unified Eztensible Firmware Interface (UEFI) Specification. Mar. 2019. URL:
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_
final.pdfl

Vagrant. URL: https://github.com/hashicorp/vagrant.

198 Yohan Pipereau


https://doi.org/10.1109/HOTI.2007.16
https://www.anandtech.com/show/12431/genz-interconnect-core-specification-10-published
https://www.anandtech.com/show/12431/genz-interconnect-core-specification-10-published
%https://www.ccixconsortium.com/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3132747.3132762
https://doi.org/10.1145/3132747.3132762
https://doi.org/10.1145/3132747.3132762
https://static.sched.com/hosted_files/kvmforum2020/8e/KVM%20Forum%202020%20Virtio-%28balloon%20pmem%20mem%29%20Managing%20Guest%20Memory.pdf
https://static.sched.com/hosted_files/kvmforum2020/8e/KVM%20Forum%202020%20Virtio-%28balloon%20pmem%20mem%29%20Managing%20Guest%20Memory.pdf
https://static.sched.com/hosted_files/kvmforum2020/8e/KVM%20Forum%202020%20Virtio-%28balloon%20pmem%20mem%29%20Managing%20Guest%20Memory.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html.
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html.
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf
https://github.com/hashicorp/vagrant

BIBLIOGRAPHY

[150] Abhishek Verma et al. “Large-Scale Cluster Management at Google with
Borg”. In: Proceedings of the Tenth European Conference on Computer Sys-
tems. EuroSys ’15. Bordeaux, France: Association for Computing Machinery,
2015. 1SBN: 9781450332385. DOI: 10.1145/2741948.2741964. URL: https:
//doi.org/10.1145/2741948.2741964.

[151] Jerome Vienne et al. “Performance Analysis and Evaluation of InfiniBand
FDR and 40GigEl RoCE on HPC and Cloud Computing Systems”. In: 2012
IEEE 20th Annual Symposium on High-Performance Interconnects. 2012,
pp. 48-55. DOI: 10.1109/H0OTI.2012.19.

[152] wirtiofs. URL: https://virtio-fs.gitlab.io/.

[153] Carl A. Waldspurger. “Memory Resource Management in VMware ESX Server”.
In: SIGOPS Oper. Syst. Rev. 36.SI (Dec. 2003), pp. 181-194. 1sSN: 0163-5980.
DOI: |10.1145/844128.844146. URL: https://doi.org/10.1145/844128.
844146

[154] Chenxi Wang et al. “Panthera: Holistic Memory Management for Big Data
Processing over Hybrid Memories”. In: Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
PLDI 2019. Phoenix, AZ, USA: Association for Computing Machinery, 2019,
pp. 347-362. 1SBN: 9781450367127. DOI: 10.1145/3314221.3314650. URL:
https://doi.org/10.1145/3314221.3314650.

[155] Chenxi Wang et al. “Semeru: A Memory-Disaggregated Managed Runtime”.
In: 14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, Nov. 2020, pp. 261-280. 1SBN: 978-
1-939133-19-9. URL: https : / /www . usenix . org/ conference / 0sdi20 /
presentation/wang.

[156] Qing Wang et al. “Concordia: Distributed Shared Memory with In-Network
Cache Coherence”. In: 19th USENIX Conference on File and Storage Tech-
nologies (FAST 21). USENIX Association, Feb. 2021, pp. 277-292. ISBN:
978-1-939133-20-5. URL: https://www.usenix.org/conference/fast21/
presentation/wang.

[157] Ruihong Wang et al. “The Case for Distributed Shared-Memory Databases
with RDMA-Enabled Memory Disaggregation”. In: Proc. VLDB Endow. 16.1
(Sept. 2022), pp. 15-22. 1sSN: 2150-8097. DoOI: [10.14778/3561261 . 3561263
URL: https://doi.org/10.14778/3561261.3561263.

[158] Wei Wang and Liang Li. virtio-balloon: VIRTIO_BALLOON_F_FREE_PAGE_HINT.
2018. URL: https://git .kernel . org/pub/scm/1linux/kernel /git/
torvalds/linux.git/commit/?71d=86a559787e6f5cf662c081363f64a20cad654195.

[159] Sage A. Weil et al. “Ceph: A Scalable, High-Performance Distributed File
System”. In: 7th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 06). Seattle, WA: USENIX Association, Nov. 2006. URL:
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-
performance-distributed-file-system.

199 Yohan Pipereau


https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1109/HOTI.2012.19
https://virtio-fs.gitlab.io/
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/3314221.3314650
https://doi.org/10.1145/3314221.3314650
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/fast21/presentation/wang
https://www.usenix.org/conference/fast21/presentation/wang
https://doi.org/10.14778/3561261.3561263
https://doi.org/10.14778/3561261.3561263
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=86a559787e6f5cf662c081363f64a20cad654195
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=86a559787e6f5cf662c081363f64a20cad654195
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system

BIBLIOGRAPHY

[160] B. L. Welch. “The Generalization of ‘Student’s’ Problem when Several Differ-
ent Population Variances are Involved”. In: Biometrika 34.1/2 (1947), pp. 28—
35. 18SN: 00063444. URL: http://www. jstor.org/stable/2332510 (visited
on 08/29/2023).

[161] Matthew Wilcox. mm: fiz XIP fault vs truncate race. 2015. URL: https :
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?71d=283307c7607de2a06d3bfae4cfbf5a566d457090.

[162] Paul Willmann, Scott Rixner, and Alan L. Cox. “Protection Strategies for
Direct Access to Virtualized I/O Devices”. In: USENIX 2008 Annual Techni-
cal Conference. ATC’08. Boston, Massachusetts: USENIX Association, 2008,
pp. 15-28.

[163] Gerhard J. Woeginger. “There is no asymptotic PTAS for two-dimensional
vector packing”. In: Information Processing Letters 64.6 (1997), pp. 293—
297. 18sN: 0020-0190. poOI: https://doi.org/10.1016/S0020-0190(97)
00179-8. URL: https://www.sciencedirect.com/science/article/pii/
S50020019097001798.

[164] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. “Towards
an Unwritten Contract of Intel Optane SSD”. In: 11th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 19). Renton, WA:
USENIX Association, July 2019. URL: https://www.usenix.org/conference/
hotstoragel9/presentation/wu-kan.

[165] Wm Wulf and Sally McKee. “Hitting the Memory Wall: Implications of the
Obvious”. In: Computer Architecture News 23 (Jan. 1996).

[166] Zi Yan et al. “Nimble Page Management for Tiered Memory Systems”. In:
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: Association for Computing Machinery, 2019, pp. 331—
345. 1SBN: 9781450362405. DOI: [10.1145/3297858 . 3304024. URL: https:
//doi.org/10.1145/3297858.3304024.

[167] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A large scale analysis of hun-
dreds of in-memory cache clusters at Twitter”. In: 1/th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX As-
sociation, Nov. 2020, pp. 191-208. 1SBN: 978-1-939133-19-9. URL: https :
//www.usenix.org/conference/osdi20/presentation/yang.

[168] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Process-
ing”. In: Commun. ACM 59.11 (Oct. 2016), pp. 56-65. 1SsSN: 0001-0782. DOI:
10.1145/2934664. URL: https://doi.org/10.1145/2934664.

[169] Efri Zeidner et al. Internet Small Computer Systems Interface (iSCSI). RFC
3720. Apr. 2004. DOT: [10.17487/RFC3720. URL: https://www.rfc-editor.
org/info/rfc3720.

200 Yohan Pipereau


http://www.jstor.org/stable/2332510
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=283307c7607de2a06d3bfae4cfbf5a566d457090
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=283307c7607de2a06d3bfae4cfbf5a566d457090
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=283307c7607de2a06d3bfae4cfbf5a566d457090
https://doi.org/https://doi.org/10.1016/S0020-0190(97)00179-8
https://doi.org/https://doi.org/10.1016/S0020-0190(97)00179-8
https://www.sciencedirect.com/science/article/pii/S0020019097001798
https://www.sciencedirect.com/science/article/pii/S0020019097001798
https://www.usenix.org/conference/hotstorage19/presentation/wu-kan
https://www.usenix.org/conference/hotstorage19/presentation/wu-kan
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://doi.org/10.17487/RFC3720
https://www.rfc-editor.org/info/rfc3720
https://www.rfc-editor.org/info/rfc3720

BIBLIOGRAPHY

[170]

[171]

[172]

[173]

[174]

175

Jin Zhang et al. “GiantVM: A Type-II Hypervisor Implementing Many-to-
One Virtualization”. In: Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Ezecution Environments. VEE "20. Lau-
sanne, Switzerland: Association for Computing Machinery, 2020, pp. 30-44.
ISBN: 9781450375542. DOI: 10.1145/3381052.3381324. URL: https://doi.
org/10.1145/3381052.3381324.

Yunqi Zhang et al. “History-Based Harvesting of Spare Cycles and Storage
in Large-Scale Datacenters”. In: 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). Savannah, GA: USENIX Asso-
ciation, Nov. 2016, pp. 755-770. ISBN: 978-1-931971-33-1. URL: https://www.
usenix . org/conference/osdil6/technical-sessions/presentation/
zhang-yunqi.

Han Zhao et al. “Bandwidth and Locality Aware Task-Stealing for Manycore
Architectures with Bandwidth-Asymmetric Memory”. In: ACM Trans. Ar-
chit. Code Optim. 15.4 (Dec. 2018). 1SSN: 1544-3566. DOI: 10.1145/3291058.
URL: https://doi.org/10.1145/3291058|

Junji Zhi, Nilton Bila, and Eyal de Lara. “Oasis: Energy Proportionality
with Hybrid Server Consolidation”. In: Proceedings of the Eleventh European
Conference on Computer Systems. EuroSys ’16. London, United Kingdom:
Association for Computing Machinery, 2016. 1SBN: 9781450342407. DOT: [10.
1145 /2901318 . 2901333. URL: https://doi.org/10.1145/2901318.
2901333.

Yang Zhou et al. “Carbink: Fault-Tolerant Far Memory”. In: 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22).
Carlsbad, CA: USENIX Association, July 2022, pp. 55-71. 1ISBN: 978-1-939133-
28-1. URL: https://www.usenix.org/conference/osdi22/presentation/
zhou-yang,.

Ross Zwisler. Add support for Heterogeneous Memory Attribute Table. June
2017. URL: https://lwn.net/Articles/724562/.

201 Yohan Pipereau


https://doi.org/10.1145/3381052.3381324
https://doi.org/10.1145/3381052.3381324
https://doi.org/10.1145/3381052.3381324
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-yunqi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-yunqi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-yunqi
https://doi.org/10.1145/3291058
https://doi.org/10.1145/3291058
https://doi.org/10.1145/2901318.2901333
https://doi.org/10.1145/2901318.2901333
https://doi.org/10.1145/2901318.2901333
https://doi.org/10.1145/2901318.2901333
https://www.usenix.org/conference/osdi22/presentation/zhou-yang
https://www.usenix.org/conference/osdi22/presentation/zhou-yang
https://lwn.net/Articles/724562/

Résumé en francais

Depuis les années 2000, il est possible de louer des machines physiques (ou
serveurs) a distance au sein de centres de données répondant a différents besoins
de configuration (ressources, architecture matérielle, ...). La location d’une ma-
chine a un unique client, que 'on nomme hébergement dédié, permet de respecter
des contraintes d’isolation basées sur la confidentialité, I'intégrité et la disponi-
bilité des applications d'un client. En revanche, I’hébergement dédié répond mal
au cas d’utilisation de nombreux clients qui souhaitent utiliser les ressources d’un
serveur momentanément ou utiliser une faible quantité de ressources. Hors, chaque
ressource inutilisée nécessite un cotit énergétique de fonctionnement qui se répercute
par des colits de location élevés. Les centres de données ont proposé un modele
de déploiement alternatif nommé hébergement mutualisé et permettant le partage
de ressources physiques entre plusieurs utilisateurs. Afin de permettre 'exécution
d’applications de différents clients tout en respectant les contraintes d’isolation, les
centres de données ont largement adoptés la virtualisation des ressources physiques
avec des unités d’exécution nommés machines virtuelles (VMs). Ainsi, les VMs ont
permis une amélioration significative de l'utilisation des ressources d'un centre de
données en permettant le partage des ressources.

Malgré I’amélioration significative d’utilisation des ressources offerte par la mu-
tualisation des ressources, les centres de données observent encore un nombre sig-
nificatif de ressources non utilisées. Deux phénomenes expliquent les raisons pour
lesquelles les centres de données peinent a augmenter 1'utilisation des ressources avec
les machines virtuelles. Premierement, lorsqu'un utilisateur demande la création
d’une VM, un orchestrateur se charge de traduire la configuration désirée en requéte
d’allocation de ressources en calcul, mémoire, stockage et bande passante réseau
sur un des serveurs du centre de données. Mais le probleme que doit résoudre
I'orchestrateur afin de trouver un placement optimal des VMs est NP-difficile. L’orchestrateur
utilise donc des heuristiques de placement qui garantissent une limite maximum
non nulle sur les ressources gaspillées au sein du centre de données mais laissent
tout de méme un ensemble de ressources non allouées. Deuxiemement, a l'issue
de I'allocation, les applications s’exécutant au sein de la VM vont progressivement
utiliser les ressources allouées lors de la création de la VM. Par construction, les
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ressources utilisées par la VM ne peuvent jamais excéder les ressources allouées
lors de la création de la VM. Les ressources inutilisées sont la différence entre les
ressources allouées et les ressources utilisées a chaque instant. Ces ressources inu-
tilisées constituent également une perte pour les centres de données qui doit les
utiliser et préférerait les louer. Par ailleurs, un phénomene nommé sur-provisionnement
participe a accentuer la quantité de ressources inutilisées. En effet, I’exécution d’une
application est ralentie si une application nécessite davantage de ressources que la
limite imposée lors de 'allocation. Afin d’éviter ces ralentissements, les utilisateurs
cherchent a sur-provisionner les VMs lors de I’allocation ce qui résulte en une aug-
mentation des ressources inutilisées si les applications ont des phases de repos.

Notre premiere proposition cherche a améliorer 1'utilisation des ressources non al-
louées sur les serveurs par ’orchestrateur. Notre prototype permet a des applications
s’exécutant dans une VM d’effectuer des acces a des ressources mémoire distante de
maniere transparente. Nous propos de reposer sur ’algorithme de remplacement de
page mémoire du noyau Linux et d’y intégrer le support pour la réservation a grain
fin des ressources mémoires. Le prototype réduit I'impact sur les performances des
applications invitées en utilisant le réseau RDMA pour les communications, et en
s'intégrant avec la gestion mémoire du systeme d’exploitation de la VM.

Notre seconde proposition cherche a améliorer I'utilisation des ressources inu-
tilisée sur un seul serveur. Ainsi, nous présentons les résultats de I'analyse de
I’ensemble des techniques existantes qui essaient d’ajuster la capacité mémoire d’une
VM par rapport a la mémoire désirée par les applications. Notre travail montre no-
tamment que les solutions actuelles implémentées au niveau de I’hyperviseur sont
trop lentes pour supporter le partage des ressources mémoire et conduisent a des
ralentissements ou interruptions de service des VMs. En utilisant les informations
issues de notre analyse, nous présentons un prototype permettant d’adapter rapi-
dement la capacité mémoire d’'une VM. Pour ce faire, nous proposons de déléguer
au systeme invité la responsabilité de changer sa propre capacité mémoire ainsi que
plusieurs optimisations sur les mécanismes permettant des changements de capacités
mémoires.
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Résumé : Les centres de données reposent large-
ment sur les machines virtuelles comme unité de dé-
ploiement afin de garantir une isolation forte entre
deux déploiements. Lintroduction de la virtualisation
a permis une amélioration significative de I'utilisation
des ressources d'un datacenter par rapport a la lo-
cation d’'une machine physique pour chaque utilisa-
teur. Malgré ce gain, les machines virtuelles offrent
toujours un gain d’utilisation de ressources plus faible
que lisolation fournie par le systeme d’exploitation a
travers des processus. Deux phénoménes expliquent
le gain relatif des machines virtuelles : au moment de
l'allocation d’'une VM, un orchestrateur traduit 'allo-
cation en une requéte d’allocation de plusieurs res-
sources sur plusieurs serveurs. Le probleme que
doit résoudre l'orchestrateur afin de trouver un pla-
cement optimal des VMs est NP-difficile, imposant
a l'orchestrateur I'utilisation d’heuristiques de place-
ment qui laissent une part de ressource inutilisées
sur chaque serveur. De plus, durant I'exécution de la
VM, la consommation mémoire augmente a mesure

Titre : Amélioration de I'utilisation de ressources mémoires pour les machines virtuelles

Mots clés : Hyperviseurs, RDMA, Systéme d’exploitation, Mémoire hétérogéne

que les accés sont effectués et la différence entre
allocation mémoire et utilisation mémoire résulte en
un ensemble de ressource mémoire qui ne peuvent
étre utilisé sans risque de crash de VMs. Dans un
premier temps, nous proposons un prototype permet-
tant d’accéder aux ressources mémoires inutilisées
sur d’autres serveurs. Notre solution est transparente
pour les applications s’exécutant dans une VM et offre
une réservation a grain fin des ressources mémoires
distantes. Dans un second temps, nous présentons
les résultats de notre étude des techniques existantes
permettant d’ajuster la capacité mémoire d’'une VM
sur la mémoire qu’elle utilise. Notre travail montre que
les solutions actuelles implémentées au niveau de
I'hyperviseur introduisent une dégradation des perfor-
mances des VMs ainsi que des temps de réponse éle-
vés empéchant le partage des ressources mémoires
par plusieurs VMs. Nous proposons une solution uti-
lisant les informations disponibles dans la VM pour
adapter rapidement leurs capacités mémoires.

Title : Improving memory usage in virtual machines

Abstract : Data-centers rely on virtual machines
(VMs) to offer isolation between deployments. While,
the use of VMs enables better resource usage com-
pared to running a service per bare-metal machine, it
achieves poorer resource usage than multi-processes
solutions. This is caused by two phenomenon : At VM
allocation time, VMs are scheduled as resource re-
quests on a VM scheduler which perform virtual ma-
chine allocations across a set of servers. Optimal so-
lution to this scheduling problem is NP-hard leading
to the adoption of heuristic based allocation that let
a good percentage of unallocated memory on each
servers known as ‘stranded memory‘. At VM runtime,
VM memory is consumed on-demand and the diffe-
rence between memory allocation and usage results

Keywords : Hypervisors, RDMA, Operating System, Heterogeneous Memory

in a decent portion of ‘allocated unused memory’ cur-
rently impractically usable.

First, we propose a transparent solution for applica-
tions running inside VMs to remotely access stranded
memory in remote machines with fine-grained reser-
vation of remote resources. Second, we review cur-
rent techniques trying to fit allocated memory to used
memory. We show that all these techniques are ma-
naged by the hypervisor and introduce performance
degradation in VMs and more importantly high res-
ponse time which makes resource sharing unpracti-
cal. Instead, we propose an abstraction to perform
VM-initiated memory provisioning and we present
early result of fast adaptation of VM memory.
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